4698

AL/2020/10/E-I(NEW)						
கேஜ இ திதிவர் அதிப்புரிமையுடையது /All Rights Reserved]						
ை கிடேசீடி பாடத்திட்டம்/New Syllabus						
இவறை இல்ல குண்ணைக்களம் இலங்கைப் புதன்கு அணைக்களும் இண்ணைக்களும் இண்ணைக்களும் இலங்கைப் பரடனாத திணைக்களும் இலங்கைப் புதன்க திணைக்களும் இன்னைக்களும் இலங்கைப் புதன்க திணைக்களும் இன்னைக்களும் இலங்கைப் பரடனாத திணைக்களும் இலங்கைப் பரடனாத திணைக்களுக் இலைக்களும் இலங்கைப் பரடனாத தேனைக்களும் இலங்கைப் பரடனாத திணைக்களுக்குக் பரடனாத சேல்ல குல்கைக்களுக் இலன்கைக்களுக் இலங்கைப் பரடனாத திணைக்களுக்கு இலைக்கைப் பரடனாத திணைக்களுக் இலைக்கைப் பரடனாத திணைக்களுக் துணைக்களும் இலங்கைப் பரடனாத திணைக்களுக் இலைக்களுக் இலன்கைப் பரடனாத திணைக்களுக் இலைக்கைப் பரடனாத திணைக்களுக் இலைக்கைக்களுக் இலங்கைப் பரடனாத திணைக்களுக் இணைக்களுக்கு தல்கைக்களுக்கு தலங்கைப் பரடனாத திணைக்களுக் இணைக்களுக் இலங்கைப் பரடனாத திணைக்களுக்கு கேல்லைக்கள் இலங்கைப் பரடனாத திணைக்களுக்கு திணைக்களுக்கு தலைக்களுக்கு தலைக்களுக்கு தினைக்களுக்கு தினைக்களுக்கள் இலங்கைப் பரடனாத தினைக்களுக்கு இணைக்களுக்கு கைக்களுக்கு இலைக்களுக்களு தலைக்களுக்களுக்களுக்களுக்களு தலைக்களுக்களுக்களுக்களுக்களுக்களுக்களுக்கள	nd nd nd nd nd					
General Certificate of Education (Adv. Level) Examination, 2020						
கூலுக்கை I இணைந்த கணிதம் I Combined Mathematics I						
பாலம் சில் கில்லு கிலையில்						
Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.						
Instructions:						
* This question paper consists of two parts;						
Part A (Questions 1 - 10) and Part B (Questions 11 - 17).						
* Part A: Answer all questions. Write your answers to each question in the space provided. You may						
use additional sheets if more space is needed.						
* Part B:						
Answer five questions only. Write your answers on the sheets provided.						
* At the end of the time allotted, tie the answer scripts of the two parts together so that						
Part A is on top of Part B and hand them over to the supervisor.						
* You are permitted to remove only Part B of the question paper from the Examination Hall.						
For Examiners' Use only						
(10) Combined Mathematics I						
Part Question No. Marks						
1 Total						
2 3 In Numbers						
4 In Words						
A 5						
6 Code Numbers						
7 Marking Examiner						
8						
9 Checked by: 1						
10						
11 Supervised by:						
12						
B 13						
B 14						
15						
16						
17						
Total						

ę., .

· ·

AI	- 2 -
	Part A
1.	Using the Principle of Mathematical Induction, prove that $\sum_{r=1}^{n} (4r+1) = n(2n+3)$ for all $n \in \mathbb{Z}^{+}$.
2.	Sketch the graphs of $y=3 x-1 $ and $y= x +3$ in the same diagram.
	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 > 2 x + 3$.
ļ	
	More Past Papers at
	More Past Papers at tamilguru.lk
	La IIII YUI U.IK
L	

•

•

a

	4698 Index Number
	/2020/10/E-1(NEW) -3- (
3.	Sketch, in the same Argand diagram, the loci of the points that represent the complex numbers z satisfying
	(i) $\operatorname{Arg}(z+1-3i) = -\frac{\pi}{4}$ and
	(ii) $ z-2 = \sqrt{2}$.
	Hence, write down the complex numbers represented by the points of intersection of these loci.
1	
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1 + x)^n$ in ascending powers of x.
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Show that if the coefficients of two consecutive terms of the above expansion are equal,

.

4

L/2020/10/E-I(NE		
Show that $\lim_{x \to \frac{3}{2}}$	$\frac{\sin\left(x-\frac{\pi}{3}\right)}{\left(\sqrt{3x}-\sqrt{\pi}\right)}=\frac{2\sqrt{\pi}}{3}.$	More Past Papers at tamilguru.lk
		9
•••••		
•••••		
••••		
	•••••	
	•••••••••••••••••••••••••••••••••••••••	
		• • • • • • • • • • • • • • • • • • • •
The region enc	closed by the curves $y = \frac{e^x}{1 + e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the	
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a
The region enc through 2π radi	closed by the curves $y = \frac{e^x}{1+e^x}$ ians. Show that the volume of the second sec	, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-a

see page five

.....

8833

ſ

7.	Show that the equation of the normal line to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at the point $P \equiv (5\cos\theta, 3\sin\theta)$ on it, is $5\sin\theta x - 3\cos\theta y = 16\sin\theta\cos\theta$.
	Find the y-intercept of the normal line drawn to the above ellipse at the point $\left(\frac{5}{2}, \frac{3\sqrt{3}}{2}\right)$ on it.
8.	Let $m \subset \mathbb{R}$ and l by the effective line matrice through the value $l = (1, 2)$ with condicat m
U .	Let $m \in \mathbb{R}$ and <i>l</i> be the straight line passing through the point $A \equiv (1, 2)$ with gradient <i>m</i> . Write down the equation of <i>l</i> in terms of <i>m</i> .
0.	
	Write down the equation of l in terms of m. It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line l is $\frac{1}{\sqrt{5}}$ units.
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .
	Write down the equation of <i>l</i> in terms of <i>m</i> . It is given that the perpendicular distance from the point $B \equiv (2, 3)$ to the line <i>l</i> is $\frac{1}{\sqrt{5}}$ units. Find the values of <i>m</i> .

•	Find the equation of the circle S having the centre at the point $(-2, 0)$ and passing through the point $(-1, \sqrt{3})$. Write down the equation of the chord of contact of the tangents drawn from the point
	$A \equiv (1, -1)$ to the circle S.
	Hence, show that the x-coordinates of the points of contact of the tangents drawn to S from A satisfies
	the equation $5x^2 + 8x + 2 = 0$.
	•••••••
).	Let $\theta \neq (2n+1)\frac{\pi}{2}$ for $n \in \mathbb{Z}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
) .	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
D.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
D.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
).	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.

**

١

.....

-

AL/2020/10/E-I(NEW)

-7-

ALI 2020 IV/E-I(NEW)
கிக்கு இதுதை அதுதை/முழுப் பதிப்புரிணையுடையது/All Rights Reserved] குறை திதேகுக்குக்குக்குக்குக்குக்குக்குக்குக்குக
தையை கால் நலைக்காம் இலங்கைப் புரின்ற இருந்து குறைக்கும் இலங்கைப் பரின்ற இலங்களில் இலங்கைப் பரின்ற இலைக்களும் இலங்கைகளும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைக்களும் இலங்கைப் பரின்ற இலைக்களும் இலங்கைக்களும் இல
අධානයන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020
க்குவீக் மல்கை I இணைந்த கணிதம் I Combined Mathematics I
Part B
* Answer five questions only.
11. (a) Let $f(x) = x^2 + px + c$ and $g(x) = 2x^2 + qx + c$, where $p, q \in \mathbb{R}$ and $c > 0$. It is given that $f(x) = 0$ and $g(x) = 0$ have a common root α . Show that $\alpha = p - q$.
Find c in terms of p and q , and deduce that
(i) if $p > 0$, then $p < q < 2p$,
(ii) the discriminant of $f(x) = 0$ is $(3p-2q)^2$.
Let β and γ be the other roots of $f(x) = 0$ and $g(x) = 0$ respectively. Show that $\beta = 2\gamma$.
Also, show that the quadratic equation whose roots are β and γ is given by
$2x^2 + 3(2p-q)x + (2p-q)^2 = 0.$
(b) Let $h(x) = x^3 + ax^2 + bx + c$, where a, b, $c \in \mathbb{R}$. It is given that $x^2 - 1$ is a factor of $h(x)$. Show that $b = -1$.
It is also given that the remainder when $h(x)$ is divided by $x^2 - 2x$ is $5x + k$, where $k \in \mathbb{R}$. Find the value of k and show that $h(x)$ can be written in the form $(x - \lambda)^2 (x - \mu)$, where $\lambda, \mu \in \mathbb{R}$.
12.(a) It is required to select a musical group consisting of eleven members from among five pianists, five guitarists, three female singers and seven male singers such that it includes exactly two pianists and at least four guitarists. Find the number of different such musical groups that can be selected.
Find also the number of musical groups among these, having exactly two female singers.
(b) Let $U_r = \frac{3r-2}{r(r+1)(r+2)}$ and $V_r = \frac{A}{r+1} - \frac{B}{r}$ for $r \in \mathbb{Z}^+$, where $A, B \in \mathbb{R}$.
Find the values of A and B such that $U_r = V_r - V_{r+1}$ for $r \in \mathbb{Z}^+$.
Hence, show that $\sum_{r=1}^{n} U_r = \frac{n^2}{(n+1)(n+2)}$ for $n \in \mathbb{Z}^+$.
Show that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.
Now, let $W_r = U_{r+1} - 2U_r$ for $r \in \mathbb{Z}^+$. Show that $\sum_{r=1}^n W_r = U_{n+1} - U_1 - \sum_{r=1}^n U_r$.
Deduce that the infinite series $\sum_{r=1}^{\infty} W_r$ is convergent and find its sum.

AL/2020/10/E-I(NEW)

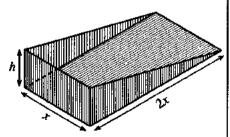
 $\left(\ldots \right)$

(10)

13.(a) Let
$$\mathbf{A} = \begin{bmatrix} 2 + \mathbf{i} & \mathbf{0} \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & \mathbf{0} \\ 0 & 1 \\ a & 2 \end{bmatrix}$ and $\mathbf{C} = \begin{pmatrix} a & \mathbf{i} \\ a & 2 \end{bmatrix}$, where $a \in \mathbf{R}$.
Show that $\mathbf{A}^T \mathbf{B} - \mathbf{I} = \mathbf{C}$; where \mathbf{I} is the identity matrix of order 2.
Show also that \mathbf{C}^{-1} exists **if and only if** $a \neq 0$.
Now, let $a = 1$. Write down \mathbf{C}^{-1} .
Find the matrix \mathbf{P} such that $\mathbf{CPC} = 2\mathbf{I} + \mathbf{C}$.
(b) Let $z, w \in \mathbf{C}$. Show that $|z|^2 = z\overline{z}$ and applying it to $z - w$,
show that $|z - w|^2 = |z|^2 - 2\operatorname{Re} z\overline{w} + |w|^2$.
Write a similar expression for $|1 - z\overline{w}|^2$ and show that $|z - w|^2 - |1 - z\overline{w}|^2 = -(1 - |z|^2)(1 - |w|^2)$.
Deduce that if $|w| = 1$ and $z \neq w$, then $|\frac{z - w}{1 - z\overline{w}}| = 1$.

(c) Express $1+\sqrt{3}i$ in the form $r(\cos \theta + i\sin \theta)$, where r > 0 and $0 < \theta < \frac{\pi}{2}$. It is given that $(1+\sqrt{3}i)^m(1-\sqrt{3}i)^n = 2^8$, where *m* and *n* are positive integers. Applying De Moivre's theorem, obtain equations sufficient to determine the values of *m* and *n*.

14.(a) Let
$$f(x) = \frac{x(2x-3)}{(x-3)^2}$$
 for $x \neq 3$.


Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{9(1-x)}{(x-3)^3}$ for $x \neq 3$.

Hence, find the interval on which f(x) is increasing and the intervals on which f(x) is decreasing. Also, find the coordinates of the turning point of f(x).

It is given that $f'(x) = \frac{18x}{(x-3)^4}$ for $x \neq 3$.

Find the coordinates of the point of inflection of the graph of y = f(x). Sketch the graph of y = f(x) indicating the asymptotes, the turning point and the point of inflection.

(b) The adjoining figure shows the portion of a dust pan without its handle. Its dimensions in centimetres, are shown in the figure. It is given that its volume $x^2h \text{ cm}^3$ is 4500 cm³. Its surface area $S \text{ cm}^2$ is given by $S = 2x^2 + 3xh$. Show that S is minimum when x = 15.

More Past Papers at tamilguru.lk

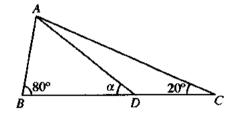
15.(a) It is given that there exist constants A and B such that $x^{3} + 13x - 16 = A(x^{2} + 9)(x + 1) + B(x^{2} + 9) + 2(x + 1)^{2}$ for all $x \in \mathbb{R}$. Find the values of A and B. Hence, write down $\frac{x^{3} + 13x - 16}{(x + 1)^{2}(x^{2} + 9)}$ in partial fractions and find $\int \frac{x^{3} + 13x - 16}{(x + 1)^{2}(x^{2} + 9)} dx$. (b) Using integration by parts, evaluate $\int_{0}^{1} e^{x} \sin^{2} \pi x dx$. (c) Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$, where a is a constant, show that $\int_{0}^{\pi} x \cos^{6} x \sin^{3} x dx = \frac{\pi}{2} \int_{0}^{\pi} \cos^{6} x \sin^{3} x dx$. Hence, show that $\int_{0}^{\pi} x \cos^{6} x \sin^{3} x dx = \frac{2\pi}{63}$.

16. Let $A \equiv (1, 2)$ and $B \equiv (3, 3)$.

Find the equation of the straight line l passing through the points A and B.

Find the equations of the straight lines l_1 and l_2 passing through A, each making an acute angle $\frac{\pi}{4}$ with l.

Show that the coordinates of any point on l can be written in the form (1 + 2t, 2 + t), where $t \in \mathbb{R}$. Show also that the equation of the circle C_1 lying entirely in the first quadrant with radius $\frac{\sqrt{10}}{2}$, touching both l_1 and l_2 , and its centre on l is $x^2 + y^2 - 6x - 6y + \frac{31}{2} = 0$.


Write down the equation of the circle C_2 whose ends of a diameter are A and B.

Determine whether the circles C_1 and C_2 intersect orthogonally.

17.(a) Write down $\sin(A-B)$ in terms of $\sin A$, $\cos A$, $\sin B$ and $\cos B$.

Deduce that

- (i) $\sin(90^\circ \theta) = \cos \theta$, and
- (ii) $2\sin 10^\circ = \cos 20^\circ \sqrt{3} \sin 20^\circ$.
- (b) In the usual notation, state the Sine Rule for a triangle ABC.

In the triangle ABC shown in the figure, $A\hat{B}C = 80^{\circ}$ and $A\hat{C}B = 20^{\circ}$. The point D lies on BC such that AB = DC. Let $A\hat{D}B = \alpha$.

Using the Sine Rule for suitable triangles, show that $\sin 80^\circ \sin (\alpha - 20^\circ) = \sin 20^\circ \sin \alpha$.

Explain why sin 80° = cos 10° and hence, show that $\tan \alpha = \frac{\sin 20^{\circ}}{\cos 20^{\circ} - 2\sin 10^{\circ}}$. Using the result in (a)(ii) above, deduce that $\alpha = 30^{\circ}$.

(c) Solve the equation $\tan^{-1}(\cos^2 x) + \tan^{-1}(\sin x) = \frac{\pi}{4}$.

4698

AL/2020/10/E-II(NEW)

•

,

ଯିଉତ୍ର ଡ	හිමිකම් ඇ	ஜின்/முழுப் பதிப்		_)
			නව නිර්දේශය/	புதிய பாட	த்திட்டம்/Ne	w Syllab	us)	
		சத் திணைக்களம் இ		Dense a saill		Janka	സ്മാര്ജ്മവുള്ള കേത്ര മാര് സെന്ന് എസ്ജനാവ വില്ക്കാര് മെഡ് മാല്ലാന്നെ വില്ക്കാര് സ്മാര്ജ്മവുള്ള കേത്ര മാര് മ് സ്മാര്ജനവം വില്ക്കും മാമറ്റ്	ப ்பைலே ருல் திணைக்களம் ns, Sri Lanka ப ்பைவேரு ல் திணைக்களம்
	අவாகன சும்த கல்கின் மறு (උகன் சைகு) சிலைக், 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020							
இன		මංකය සංක්දුර 1 Mathematic	11 11 s 11		EII			
CU G	ා තුනයි බහු ගශ ree hou	னித்தியாலம் பா s			மேலதி	කියවීම් : ස வாசிப onal Read	Ŷ	ஒ 10 கே பெங்கள் nutes
	Use addi	tional reading ti			ion paper, sel you will prio		estions you will answe	r and
	<u> </u>							
			Index Number	.				
In	struction				nanto:	LL		
		_	on paper consi.			11 17)		
			uestions 1-10)	ana rar i	D (Quesuons	11-17)		
			questions. Writ	e vour ansv	vers to each	question i	n the space provided.	You may
			nal sheets if m			-	•	
		* Part B:						
			e questions onl					n ao that
1			of the time a on top of Part				the two parts togethe	r so inai
								tion Hall
							per from the Examina	
		* In this que	stion paper, g	denotes the r Examiner		due to g	avity.	
	(14) 4							
	Part	Combined Mathe Question No.	Marks					
	1 41 1	1						
		2				_	Total	
		3		1	In Numbers)
		4			In Words			— ·
	A	5		•		l,		
		6					Code Numbers	
		7			Marking Exa	miner		
		8			0	1		
		9			Checked by:	1	. <u> </u>	
		10				2		
		11			Supervised b	y:		
		12			ــــــ	I		
	в	13						
	~	14			M	ore Pa	st Papers at	
		15					•	
		16			ta	amıl	guru.lk	
		17						
		Total						

AL	2020/10/E-II(NEW)

\bigcap	Part A
1.	Two particles A and B each of mass m , moving in the same straight line on a smooth horizontal
	floor, but in opposite directions collide directly. The velocities of A and B just before collision are
	u and λu , respectively. The coefficient of restitution between A and B is $\frac{1}{2}$.
i	A B Find the velocity of A just after collision and show that if $\lambda > \frac{1}{3}$, then
	$\begin{pmatrix} m \end{pmatrix} \stackrel{\mu}{\rightarrow} \stackrel{Au}{\leftarrow} \begin{pmatrix} m \end{pmatrix}$ the direction of motion of A is reversed.
l	••••••
	,,
	.,
2.	A particle is projected from a point O on a horizontal floor
	with initial velocity $u = \sqrt{2ga}$ and at an angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to
	the horizontal. The particle just clears a vertical wall of height $\frac{3a}{4}$
	$\frac{3a}{4}$ located at a horizontal distance <i>a</i> from <i>O</i> . $u = \sqrt{2ga}$
	Show that $\sec^2 \alpha - 4\tan \alpha + 3 = 0$.
	Hence, show that $\alpha = \tan^{-1}(2)$.

,

AL	L/2020/10/E-U(NEW)		\Box
\bigcap	L/2020/10/E-II(NEW) -3-(
4.	 A car of mass 1500 kg travels on a straight horizontal road against a constant resistance of m 500 N. Find the acceleration of the car when the engine of the car is working at power 50 the car is travelling with speed 25 m s⁻¹. At this instant, the engine of the car is turned off. Find the speed of the car after 50 second the instant the engine was turned off. 	kW	and
		· · · · · · · ·	
		· · · · · · · ·	•••• •••• ••••
			···· ····
			···· ····

.

_

-

•

5.	A particle P of mass $2m$, hanging freely from a horizontal ceiling by a light inextensible string of length l , is in equilibrium. Another particle of mass m moving in a horizontal direction with velocity u collides with the particle P and coalesces to it. The string remains
	taut after the collision and the composite particle just reaches the $u = \sqrt{18gl}$.
	•••••••
6.	Let $\alpha > 0$ and in the usual notation, let $i + \alpha j$ and $\alpha i - 2j$ be the position vectors of two points
	A and B, respectively, with respect to a fixed origin O. Also, let C be the point on AB such that
	$AC: CB = 1:2$. It is given that OC is perpendicular to AB. Find the value of α .
	,
	,
	· · · · · · · · · · · · · · · · · · ·
	······
	•••••••••••••••••••••••••••••••••••••••

١

-

_

.

.

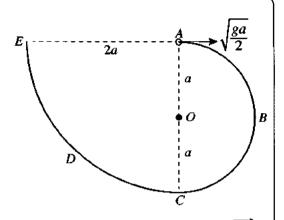
7.	A uniform rod ACB of length 2a and weight W is kept in equilibrium with the end A against a smooth vertical wall by a smooth peg placed at C, as shown in the figure. It is given that the reaction at A from the wall is $\frac{W}{\sqrt{2}}$. Show that the angle α that the rod
	makes with the horizontal is $\frac{\pi}{5}$.
	Show also that $AC = \frac{3}{4}a$.
8.	A small head of weight W is threaded to a fixed rough straight wire inclined at
	A small bead of weight W is threaded to a fixed rough straight wire inclined at an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude <i>P</i> as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force <i>E</i> and the normal
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude <i>P</i> as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude <i>P</i> as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force <i>F</i> and the normal
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.
	an angle $\frac{\pi}{4}$ to the horizontal. The bead is kept in equilibrium by a horizontal force of magnitude P as shown in the figure. The coefficient of friction between the bead and the wire is $\frac{1}{2}$. Obtain equations sufficient to determine the frictional force F and the normal reaction R on the bead, in terms of P and W.

·9.	Let A and B be two events of a sample space Ω . In the usual notation, it is given that $P(A) = \frac{3}{2}$ and $P(A + R) = \frac{4}{2}$ Find $P(R)$.			
	$P(A) = \frac{3}{5}$, $P(B A) = \frac{1}{4}$ and $P(A \cup B) = \frac{4}{5}$. Find $P(B)$.			
	Show that the events A and B are not independent.			
	••••••			
	- 			
10.				
	and mode each equals to 6. The range of the observations is 9. Find these five observations.			
I I				

_

-

-

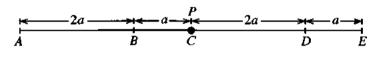

AL/2020/10/E-II(NEW)

7 -

AL/2020/10/E-H(NEW)
മാള @ 50000 എല്റായി എല്ലൂട്ടിഞ്ഞവുവെ വളു/All Rights Reserved
ை கிட்டீர்க ை/புதிய பாடத்திட்டம்/New Syllabus)
கையிலை மூல் நால்களில் இரைவைப்படுகள்களுக்கு கான் குண்களில் இருந்து குண்கு கால் குண்களில் இரைவரைப்படுகள் இரைவருக் கிணைக்களம் இரைவரைப்படுகள்களில் பிரை கால்களில் இரைவரைப்படுகள்களில் இரைவருகளில் குண்களில் இரைவருகளில் இரைவருக்களில் பிரை கால்களில் இரைவருகளில் கிணைக்களில் குண்களில் குண்களில் கிணைக்களில் இரைவருகளில் இரைவருக்கு பிரு கிணைக்களில் இரைவருகளில் கிணைக்களில் இரைவருகளில் கிணைக்களில் கிணைக்களில் குண்களில் இரைவருகளில் இருந்தை கிணைக்களில் இரைவருகளில் கிணைக்களில் இருந்தை கிணைக்களில் கிணைக்களில் இருந்து கிணைக்களில் இரைவருகளில் கிணைக்களில் இருந்தை கிணைக்களில் கிணைக்களில் இருந்து கிணைக்களில் இருந்தை இரைவருகளில் இருந்தை இருந்து இரைவருகளில் கிணைக்களில் இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து இருந்து இருந்து கிணைக்களில் இருந்து கிணைக்களில் இரைவருகளில் இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து இருந்து இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து கிணைக்களில் இருந்து கிணைக்களில்
අධාසයන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020
பல பிக்கையில் பி இணைந்த கணிதம் பி Combined Mathematics II
Part B
* Answer five questions only.
(In this question paper, g denotes the acceleration due to gravity.)
1. (a) Three railway stations P, Q and R located in a straight line such that $PQ = 140$ km and $QR = a$ km, as shown in the figure. At time $t = 0$, a train A starts from rest $P = Q$
at P and moves towards Q with constant acceleration $f \operatorname{km} \operatorname{h}^{-2}$ for half an hour and maintains
the velocity it had at time $t = \frac{1}{2}$ h for three hours. Then it moves with constant retardation
$f \operatorname{km} h^{-2}$ and comes to rest at Q. At time $t = 1 h$, another train B starts from rest at R and
moves towards Q with constant acceleration $2f \text{ km h}^{-2}$ for T hours and then with a constant retardation $f \text{ km h}^{-2}$ and comes to rest at Q . Both trains come to rest at the same instant. Sketch velocity-time graphs for the motions of A and B in the same diagram. Hence or otherwise, show that $f = 80$ and find the values of T and a .
 (b) A ship is sailing due west with uniform speed u relative to earth and a boat is sailing in a straight line path with uniform speed ^u/₂ relative to earth. At a certain instant, the ship is at a distance d at an angle ^π/₃ cast of north from the boat. (i) If the boat is sailing relative to earth in the direction making an angle ^π/₆ west of north, show that the boat can intercept the ship and that the time taken by the boat to intercept the ship is ^{2d}/_{√3u}. (ii) If the boat is sailing relative to earth in the direction making an angle ^π/₆ cast of north,
show that the speed of the boat relative to the ship is $\frac{\sqrt{7}u}{2}$ and that the shortest distance between the ship and the boat is $\frac{d}{2\sqrt{7}}$.
2.(a) The triangle ABC in the figure is the vertical cross-section through the centre of gravity of a smooth uniform wedge of mass $3m$ with $A\hat{C}B = \alpha$, $A\hat{B}C = \frac{\pi}{2}$ and $AB = 2a$ such that the face containing BC is placed on a smooth horizontal floor. The line AC is a line of greatest slope of the face containing it. The point D is a fixed point in the plane of ABC such that AD is horizontal. Two particles P and Q of masses m and $2m$, respectively

are attached to the two ends of a light inextensible string of length 3a passing over smooth small pulleys fixed at A and D. The system is released from rest with the particle P held on AC and the particle Q hanging freely such that AP = AD = DQ = a, as shown in the figure. Obtain equations sufficient to determine the time taken by the particle Q to reach the floor.

(b) A smooth thin wire ABCDE is fixed in a vertical plane, as shown in the figure. The portion ABC is a semicircle with centre O and radius a, and the portion CDE is a quarter of a circle with centre A and radius 2a. The points A and C lie on the vertical line through O and the line AE is horizontal. A small smooth bead P of mass m is placed at A and is given a velocity $\sqrt{\frac{ga}{2}}$ horizontally, and begins to move along the wire.



Show that the speed v of the bead P when \overrightarrow{OP} makes an angle θ ($0 \le \theta \le \pi$) with \overrightarrow{OA} is given by $v^2 = \frac{ga}{2}(5 - 4\cos\theta)$.

Find the reaction on the bead P from the wire at the above position and show that it changes its direction when the bead P passes the point $\theta = \cos^{-1}\left(\frac{5}{6}\right)$.

Write down the velocity of the bead P just before it leaves the wire at E and find the reaction on the bead P from the wire at that instant.

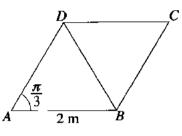
13. The points A, B, C, D and E lie on a straight line in that order, on a smooth horizontal table such that AB = 2a, BC = a, CD = 2a and DE = a, as

shown in the figure. One end of a light elastic string of natural length 2a and modulus of elasticity kmg is attached to the point A and the other end to a particle P of mass m. One end of another light elastic string of natural length a and modulus of elasticity mg is attached to the point E and the other end to the particle P. When the particle P is held at C and released, it stays in equilibrium. Find the value of k.

Now, the string AP is pulled until the particle P reaches the point D and released from rest. Show that the equation of motion of P from D to B is given by $\ddot{x} + \frac{3g}{a}x = 0$, where CP = x.

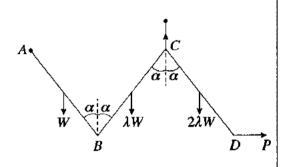
Using the formula $\dot{x}^2 = \frac{3g}{a}(c^2 - x^2)$, where c is the amplitude, show that the velocity of particle P when it reaches B is $3\sqrt{ga}$.

An impulse is given to the particle P when it reaches B so that the velocity of P just after the impulse is \sqrt{ag} in the direction of \overrightarrow{BA} .


Show that the equation of motion of P after passing B until it comes to instantaneous rest is given by $\ddot{y} + \frac{g}{a}y = 0$, where DP = y.

Show that the total time taken by the particle P, started at D, to reach B for the second time is $2\sqrt{\frac{a}{g}}\left(\frac{\pi}{3\sqrt{3}} + \cos^{-1}\left(\frac{3}{\sqrt{10}}\right)\right)$.

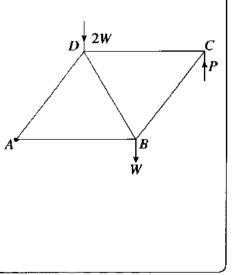
More Past Papers at tamilguru.lk


14. (a) Let a and b be two unit vectors. The position vectors of three points A, B and C with respect to an origin O, are 12a, 18b and 10a + 3b respectively. Express AC and CB in terms of a and b. Deduce that A, B and C are collinear and find AC : CB. It is given that OC = √139. Show that AÔB = π/3. (b) Let ABCD be a rhombus with AB = 2 m and BÂD = π/3. Forces of magnitude 10 N, 2 N, 6 N, P N and Q N act along AD, BA.

BD, DC and CB respectively, in the directions indicated by the order of the letters. It is given that the resultant force is of magnitude 10 N and its direction is in the direction parallel to BC in the sense from B to C. Find the values of P and Q. Also, find the distance from A to the point where the line of action of the resultant force meets BA produced.

Now, a couple of moment M Nm acting in the counterclockwise sense and two forces, each of magnitude F N acting along CB and DC in the directions indicated by the order of the letters, are added to the system so that the resultant force passes through the points A and C. Find the values of F and M.

15.(a) Three uniform rods AB, BC and CD, each of length 2a are smoothly joined at the ends B and C. The weights of the rods AB, BC and CD are W, λW and $2\lambda W$, respectively. The end A is smoothly hinged to a fixed point. The rods are kept in equilibrium in a vertical plane by a light inextensible string attached to the joint C and to a fixed point vertically above C and by a horizontal force P applied to the end D such that A and C are at the same horizontal

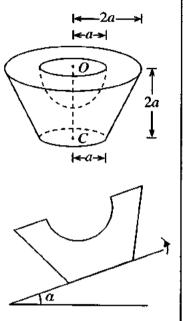


level and each of the rods making an angle α with the vertical, as shown in the figure. Show that $\lambda = \frac{1}{2}$.

Show also that the horizontal and vertical components of the force exerted on AB by CB at B are $\frac{W}{3}\tan\alpha$ and $\frac{W}{6}$, respectively.

(b) The framework shown in the adjoining figure is made from light rods AB, BC, CD, DA and BD, each of length 2a, freely jointed at A, B, C and D. There are loads of W and 2W at B and D, respectively. The framework is smoothly hinged at A to a fixed point and kept in equilibrium with AB horizontal by a vertical force Papplied to it at C, as shown in the figure. Find the value of P in terms of W.

Draw a stress diagram using Bow's notation and hence, find the stresses in the rods stating whether they are tensions or thrusts.



16. Show that the centre of mass of

- (i) a uniform solid right circular cone of base radius r and height h is at a distance $\frac{h}{4}$ from the centre of the base,
- (ii) a uniform solid hemisphere of radius r is at a distance $\frac{3r}{8}$ from its centre.

The adjoining figure shows a mortar S made by removing a solid hemisphere from a frustum of a solid uniform right circular cone having base radius 2a and height 4a. The radius and the centre of the upper circular face of the frustum are 2a and O, respectively, and those for the lower circular face are a and C, respectively. The height of the frustum is 2a. The radius and the centre of the removed solid hemisphere are a and O, respectively. Show that the centre of mass of mortar S lies at a distance $\frac{41}{48}a$ from O.

Mortar S is placed on a rough horizontal plane with its lower circular face touching the plane. Now, the plane is tilted upwards slowly. The coefficient of friction between the mortar and the plane is 0.9. Show that if $\alpha < \tan^{-1}(0.9)$, then the mortar stays in equilibrium, where α is the inclination of the plane to the horizontal.

17.(a) In a certain factory, machine A makes 50% of the items and the rest are made by machines B and C. It is known that 1%, 3% and 2% of the items made by A, B and C respectively are defective. The probability that a randomly selected item is defective is given to be 0.018. Find the percentages of items made by the machines B and C.

Given that a randomly selected item is defective, find the probability that it was made by the machine A.

(b) The time taken (in minutes) to travel to work from their homes of 100 employees of a certain factory are given in the following table:

Time taken	Number of employees
0 – 20	10
20 - 40	30
40 - 60	40
60 - 80	10
80 - 100	10

Estimate the mean, standard deviation and the mode of the distribution given above.

Later, all of the employees in the class interval 80-100 moved closer to the factory. It has changed the frequency of the class interval 80-100 from 10 to 0 and the frequency of the class interval 0-20 from 10 to 20.

Estimate the mean, standard deviation and the mode of the new distribution.

* * *