

(II) Standard enthalpy changes of two reactions are given below.

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} \qquad \Delta H^{\theta} = -284 \text{kJmol}^{-1}$$

$$2NO_{(g)} + 2CO_{(g)} \longrightarrow N_{2(g)} + 2CO_{2(g)} \qquad \Delta H^{\theta} = -748 \text{kJmol}^{-1}$$
The following thermal charminal data are also given

The following thermo chemical data are also given

 $\Delta H^{\theta}_{f(H_2O_{(g)})} = -242 \text{ kJmol}^{-1}$

 $\Delta H^{\theta}_{f(NH_{3(g)})} = -46 \text{ kJmol}^{-1}$

 $S^{\theta}_{(H_2O_{(g)})} = 189 \, Jmol^{-1}K^{-1}$

 $S^{\theta}_{(NH_{3}(\sigma))} = 193 \, Jmol^{-1}K^{-1}$

 $S^{\theta}_{(NO_{(g)})} = 211 \, Jmol^{-1}K^{-1}$

 $S^{\theta}_{(O_{2(g)})} = 205 \text{ Jmol}^{-1} \text{K}^{-1}$

Using the above information calculate the following for the reaction

 $4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(g)}$

I. Standard enthalpy of reaction (ΔH_R^{θ})

II. ΔS^{θ}

III. ΔG^{θ}

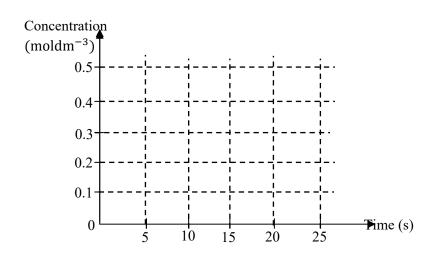
Hence, predict whether the above reaction is spontaneous at 25°C.

6) (A) X + Y + 2Z \longrightarrow Products

To investigate the kinetics of the above reaction at 25° C, four experiments were carried out in which the initial concentrations of X, Y and Z were changed and in each circumstance, the change in concentration of reactant X and the time taken for it were measure. The results of the experiments were tabulated as below.

Experiment	[x]/moldm ⁻³	[Y]/moldm ⁻³	[Z]/moldm ⁻³	$\Delta[\mathbf{x}]/\mathbf{moldm}^{-3}$	t/s	Initial rate R moldm ⁻³ s ⁻¹
1	0.2	0.1	0.1	0.040	25	
2	0.2	0.2	0.1	0.096	30	
3	0.1	0.1	0.2	0.012	30	
4	0.1	0.1	0.1	0.012	30	

- (i) Calculate the initial rates in each of the experiments and complete the relevant column in the table.
- (ii) Assuming the rate orders with respect to X, Y and Z to be a, b and c respectively and the rate constant as k, write a mathematical expression for the rate of the reaction (R)
- (iii) Using the data given in the table, calculate the volume of a, b, c and k


- (iv) Plot the variation of the concentration of Z with time while keeping the concentration of X and Y constant in a graph.
- (v) How would the rate change if the concentration of each of X and Y are doubled while keeping the concentration of Z constant?
- (B) Consider the reaction $A_{(g)} + 2B_{(g)} \rightleftharpoons 3C_{(g)}$.

The above reaction tales place in a closed vessel of 1 dm^3 volume at 400 K. Assume that the reaction was started at t = 0 and the concentration of $A_{(g)}$, $B_{(g)}$ and $C_{(g)}$ at any time t = t s are 0.6 moldm⁻³, 0.3 moldm⁻³, 0.3 moldm⁻³ respectively. The reaction attained equilibrium at t = 15 s and the equilibrium concentrations of $A_{(g)}$, $B_{(g)}$ and $C_{(g)}$ were 0.4 moldm⁻³, 0.1 moldm⁻³ and 0.3 moldm⁻³.

At t = 17 s, 0.2 moles of $C_{(g)}$ was introduced to the system and at t = 25 s, the system attained a new equilibrium again.

Assuming that the temperature of the system remains unchanged throughout all the above processes, answer the following

- (i) Calculate the equilibrium constant k_c for the above reaction at 400 K.
- (ii) If there was no $C_{(g)}$ in the system initially, what would be the amounts of A and B in the system at t = 0?
- (iii) By calculating the value of Q_c at time t = t s after the reaction has started, predict the direction in which the reaction has proceeded so as to attain equilibrium.
- (iv) Indicate the changes in concentrations of the reactants and products in the above process at times t = 0, 15 s, 20 s and 25 s in a graph indicated as below.

- 7) (A) A transition metal M forms a coloured complex ion P in aqueous medium. It has the general formula [M(H₂O)_n]^{m+}
 - When a limited amount of concentrated NH_{3(aq)} is added to P, initially a pink coloured precipitate (Q) is formed.
 - On further addition of conc. NH_{3(aq)}, the above precipitate dissolves to give a yellow coloured solution (R).
 - The above yellow coloured solution turned brown after some times.
 - When concentrated HCl is added to P, the blue coloured (S) is formed.
 - (i) Identify the metal M and mention the oxidation state of M in the complex ion P.
 - (ii) Give the electronic configuration of M in the complex ion P.
 - (iii) Give the values of m and n.
 - (iv) Give the structure of Q, R and S
 - (v) Write the IUPAC names of the complex ions P, R and S
 - (vi) Explain the reason for the change in colour from yellow to brown
 - (B) A and B are two coordination compound with molecular formula $CoN_5H_{12}I_2O_2$. H atom exist only as NH₃ in both compounds and cobalt is in he same oxidation state. Only compound B gives a yellow precipitate with AgNO_{3(aq)} which is insoluble even in concentrated NH₃
 - (i) In the above compounds, what is the oxidation state of Co?
 - (ii) Write the complete electronic configuration of Co ion given in above?
 - (iii) Identify common ligands coordinated in compounds A and B.
 - (iv) Deduce the structural formulae of compounds A and B (Reasons are required)
 - (v) Give a chemical test to identify the anion in compound A.

Part – II C

8) (A) Using $CH_2 = CH_2$ as the only organic starting material and as reagents only those given in the list, show how would you synthesis the following compound in not more than eight (8) steps.

$$CH_3CH = CHCH_2 - \langle \circ \rangle$$

List of Reagents

 Cl_2 ,dilH₂SO₄, anhydrous *Alcl*₃conH₂SO₄, *H*₂O, *PCl*₅, *Mg*, dry ether, Pyridinium Chlorochromate PCC. (B) Show how you would carry out the following conversion not more than eight (8) steps

$$CH \equiv CH \longrightarrow CH_3 - CH = N - CH_2 CH_2 CH_2 CH_3$$

(C) Give the major product of the following reaction

$$CH_3 - CH_2 CH = CH_2 \xrightarrow{conc. H_2SO_4}$$

- (i) Write the structure of the major product
- (ii) Write the mechanism for the formation of the product in part (i).
- 9) a) Solution P contains two cations and two anions. Following tests were carried out to identify these cations and anions.

Test for cations

	Test	Observation		
(i)	Dilute KOH solution was added drop	A grey precipitate (X_1)		
	wise into a small portion of P	A brown precipitate (X_2)		
(ii)	Dilute NH ₃ solution was added into the	A part of precipitate dissolves.		
	above obtained precipitates.	The brown precipitate remains.		
(iii)	Solution was separated from (ii) by	White precipitate (X_3)		
	filtration and dilute HNO3 was added then	It turns black (X_4) when heated.		
	excess $Na_2S_2O_3$ was added to the solution			
(iv)	Dilute HNO ₃ was added to the precipitate	Red colour complex compound		
	(X_2) then NH ₄ SCN added	(X ₅)		

Test for anions

Test	Observation
I. Acidified KMnO ₄ solution was added into P.	KMnO ₄ colour decolourized gas evolved.
II. BaCl ₂ solution was added into the solution from (I)	White precipitate (X_6) which is insoluble in dil HNO ₃ was obtained.
III. Gas from (I) was passed through clear lime water.	First white precipitate formed (X_7) then a clear solution (X_8) was obtained.
IV. $Ca(NO_3)_2$ was added into solution of P.	A white precipitate (X_9)
V. Dilute HCl was added into P solution	A brown colour gas (X_{10}) evolved.
(i) Identify cations and anions	
(ii) Identify $X_1 - X_{10}$.	

B) Solution G contains Hg²⁺, Br⁻ and H⁺. The following procedures were used to determine their concentrations.

Procedure - I

Excess AgNO₃ solution was added to 25.00 cm^3 of the solution G forming a precipitate. Dried mass of the precipitate is 3.761 g

Procedure - II

 H_2S was bubbled through 25.00 cm³ of solution G to precipitate Hg^{2+} as HgS. The precipitate was filtered and the filtrate was kept to be used in procedure III. The precipitate was transferred into 30.00 cm³ of 0.2 moldm⁻³ acidic KMnO₄ to produce Hg^{2+} , Mn²⁺ and SO₂. (Assume there's no reaction between SO₂ and KMnO₄) The solution was boiled to remove SO₂, and the excess KMnO₄ was titrated with 0.3 moldm⁻³ Na₂C₂O₄. The needed volume of Na₂C₂O₄ to completely react with KMnO₄ is 20.00 cm³

Procedure III

The filtrate from II above was boiled to remove H_2S and cooled to room temperature. The solution was neutralized by 0.4 moldm⁻³ Ba(OH)₂. The needed volume of Ba(OH)₂ for complete neutralization is 25.00 cm³

According to the procedures above, find the concentrations of Hg^{2+} , Br^- and H^+

- 10) a) X is a P block element. In room temperature, it found as a diatomic molecule. X_1 . It has a boiling point of 34.7° C and melting point of 101° C. It has high electron affinity. X can take both positive and negative oxidation numbers.
 - I. Identify X, X_1
 - II. Write the electronic configuration of X as $1S^2$, $2S^2$
 - III. Give the oxidation numbers of X
 - IV. Give four oxyacids of X
 - V. Give the hydrides of the elements (HX) in the group to which X belongs and sketch the variation in boiling points of these hydrides. Explain the variation
 - VI. In each of the following instances, give balanced chemical equation
 - i. With excess NH₃
 - ii. With excess NaOH
 - VII. Give one use of X.

b) Give the highest oxidation number oxides of third period elements and give their,

I. Oxidation number

- II. Bond type.
- III. Acidic or basic behaviour

c) Acidic strength of carboxylic acid is greater than acidic strength of phenol . Explain this.

d) Write balanced chemical equation for the following chemical reactions.

- I. Thermal decomposition Of LiNO₃
- II. Hydrolysis of SCl₂
- III. Reaction of Br₂ with NaOH
- IV. $KMnO_4 + H_2SO_4 + H_2S \longrightarrow$
- V. $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}_2 \operatorname{O}_2 + \operatorname{H}^+ \longrightarrow$
- e) Excess KI was added into 2.568 g of KIO₃ solution. Find the minimum volume of 3 moldm⁻³ HCl to completely convert KIO₃ to I₃⁻. [K-39, I-127, O-16]