

07. Which of the following statement regarding 3d - block element is false?

- 1) Their electronegativity is higher than that of 4s block elements.
- 2) of the 3d block elements Cu has the highest second ionization energy.
- 3) The height oxidation number of the first five 3d elements is equal to the total number of electrons in 4s and 3d.
- 4) Transition metals and their compounds act as catalysts.
- 5) The first ionization energy of 3d block elements is higher than that of S block elements.

08. Which of the following statements is true regarding the sample of an ideal gas.

- 1) At constant temperature molecules of this gas has kinetic energy and potential energy.
- 2) At the same temperature their kinetic energy is constant.
- 3) When the temperature of the sample is increased by 273.15°C the average kinetic energy of the molecules may be doubled.
- 4) When gaseous molecules collide, their velocity do not change.
- 5) During the collision of gaseous molecules there will be no change in their energy.

09. Consider the thermal decomposition of the following compounds.

A) NH_4NO_2	B) NH ₄ NO ₃	C) $(NH_4)_2 CO_3$	D) NH ₄ Cl

During the decomposition the compound / s that produce product without change in oxidation number in N atom.

- 1) A and B
 2) C and D
 3) B and C

 4) A, B and C
 5) B, C and D
- 10. Which of the following statements is false regarding the chlorination of alkanes
 - 1) UV radiation induces the homolytic cleavage of chlorine gas.
 - 2) The carbon radicals formed during the reaction chain, is known as reactive intermediates.
 - 3) Chain termination steps produce carbon free radicals.
 - 4) In methane's chlorination progressive steps, CCl_4 is produced via eight steps reactions.
 - 5) C H bonds react with free radicals by homolytic cleavage.

11. Which of the following statements is true regarding group 16 elements and their compounds.

- 1) All hydrides of group 16 elements are poisonous.
- 2) Ozone is odorless gas.
- 3) H_2O_2 is a molecule without polarity.
- 4) Sulphur forms the strong oxy acids H_2SO_4 and H_2SO_3
- 5) Ozone is used as antiseptic.

12. Which of the following intermediates is formed in large quantity in the reaction between propene and HBr

1)
$$CH_{3} - CH - CH_{2}$$

 $Br^{(+)}$
2) $CH_{3} CH_{2} CH_{2}$
3) $CH_{3} CH CH_{3}$
4) $CH_{3} - CH - CH_{2}$
 Br
5) $CH_{3} - CH - CH_{2}$
 $H_{(+)}$

Which of the following statements is true regarding the compound 13. $CH_2 = CH - CH - CH_3$ Rr 1) It has four stereo isomers. 2) The product formed by the reaction with $KOH_{(aq)}$ does not show optical isomerism. 3) The product formed by the reaction with C_2H_5OH/KOH shows stereo isomerism. 4) The product formed by the reaction with HBr shows four stereo isomers. 5) It does not react with bayers reagent. 14. Consider the following thermo chemical data. $3 \operatorname{Fe}_2 O_{3(s)} + CO_{(g)} \longrightarrow 2 \operatorname{Fe}_3 O_{4(s)} + CO_{2(g)} \Delta H - 59 \text{ kJ } mol^{-1}$ $Fe_3O_{4(s)} + CO_{(g)} \longrightarrow 3 FeO_{(s)} + CO_{2(g)} \Delta H = 38 \text{ kJ } mol^{-1}$ $FeO_{(s)} + CO_{(g)} \longrightarrow Fe_{(s)} + CO_{2_{(g)}} \Delta H = -17 \text{ kJ } mol^{-1}$ Calculate ΔH of the following reaction (kJmol⁻¹) $Fe_2 O_{3(s)} + 3CO_{(g)} \longrightarrow 2 Fe_{(s)} + 3CO_{2(g)}$ 2) -85 1) -28.3 3) -27.2 4) -16.8 5) -29 15. A container of capacity V dm³ contains 13g of Xe gas at t[°]C and 1×10^5 Pa pressure. When the temperature of the container was raised by $10^{\circ}C$, the pressure increased by 10%. Assuming that the gas behaves ideally calculate the volume of the container (in dm^3) $(Xe - 130g mol^{-1})$ 4) 0.8314 1) 0.527 2) 0.4157 3) 8.314 5) 0.16628 Follow the instructions for questions from 16 to 20 1 3 4 5 2 (c) and (d) are (a) and (b) are (b) and (c) are (a) and (d) are Other correct correct correct correct combinations correct

16. Which of the following statements is / are true regarding a reaction that takes place at temperature T.

- a) If the enthalpy of a reaction is negative, then the reaction is spontaneous.
- b) If the entropy change of a reaction is negative then the reaction is spontaneous.
- c) If the entropy change of a reaction is positive and the enthalpy change is negative then the reaction is spontaneous.
- d) If the entropy change is negative and the enthalpy change is negative the reaction will not be spontaneous always.

17. Which of the following statements is / are false regarding propyne.

- a) Gives red precipitate with ammoniacal CuCl₂
- b) Reacts with $NaNH_2$ and produce ammonia gas as one of the produce.
- c) Reacts with CH₃MgBr and produces a gas and propynyl magnesium bromide.
- d) Reacts with $HgSO_4 \ dil \ H_2SO_4$ to produce an aldehyde.

3

 Which of the following gives a precipitate with NH₄OH and soluble in excess NH₄OH, precipitate with NaOH and with excess NaOH gives insoluble precipitate

a) Ni^{2+} , Cr^{3+} , Ag^+ b) Ni^{2+} , Co^{2+} , Ag^+ c) Cu^{2+} , Ni^{2+} , Ag^+ d) Fe^{2+} , Zn^{2+} , Co^{2+}

19. Which of the following thermo chemical equations is / are correct

a) Lattice enthalpy of $MgBr_{2(s)}$ $Mg^{2+}_{(g)} + 2Br^{-}_{(\ell)} \longrightarrow MgBr_{2(s)}$ b) atomization of iodine $I_{2(s)} \longrightarrow I_{2(g)}$ c) electron affinity of chlorine $Cl_{(g)} + e \longrightarrow Cl^{-}_{(g)}$ d) enthalpy of formation of $NaI_{(s)}$ $Na_{(s)} + I_{(s)} \longrightarrow NaI_{(s)}$

20. Which of the following statements is / are correct

- a) Electronegativity of S $SCl_2 < SO_3^{2-} < SO_2 < SO_3$
- b) Melting point LiI < LiBr < LiCl < LiF
- c) Bond angle $NH_3 < NF_3 < NO_2^+$
- d) N O bond length $NO^+ < NOCl < NH_2OH$

✤ Instructions for questions from 21 to 25.

First statement	Second statement
1) Correct	Correct and correctly explains
2) Correct	Correct, does not explain correctly
3) Correct	Not correct
4) Wrong	Correct
5) Wrong	Wrong

21)	In aqueous state MnO_4^- , CrO_4^{2-} . Oxo anions	When d subshells are partially filled, in	
	are coloured	aqueous state they are coloured.	
22)	2 – chloro but -2-ene shows diastereo	2-chlorobut-2-ene may have two structures	
	isomerism	which are not mirror images of one another	
23)	Decomposition of H_2O_2 is and example for	A chemical species undergoing oxidation and	
	disproportionation.	reduction at the same time is called	
		disproportionation.	
24)	At STP, ideal gases occupy the same	There is no intermolecular attraction in ideal	
	volume	gas.	
25)	CCl ₄ is more volatile than CBr ₄	Both CCl ₄ and CBr ₄ possess non polar	
		covalent bonds.	

4