Conducted by Field Work Centre, Thondaimanaru								
	In Collaboration with Provincial Department of Education							
	Northern Province							
	FWC Term Examination, November - 2019							
Grade – 12 (2021) Chemistry - I Time :- 3 hours 10 min				s 10 minutes				
	Part - I							
•	$N_A = 6.022 \times 10^{23} m$	ol^{-1} $h = 6.626 \times 10^{-34}$	Js <i>C</i> =	= 3 × 10 ⁸ n	$ns^{-1} R = 8.3$	314 J mol ⁻¹ K ⁻¹		
**	Answer all questions.							
1)	1) Among the scientists who put forward the theories related to atomic structure, the one whose contribution is least is							
	1. Thomson	2. Rutherford		2	3. Niels Bohr			
	4. Dalton	5. Marsden						
2)	 2) The process which has dipole – induced dipole interaction as the secondary interactive attraction is dissolution of iodine solid in water dissolution of KCl_(s) in water mixing of methanol with water none of the above 							
3)	Which one of the follow1. CO2. C	$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$	onic w	ith the other 4. N ₂	s? 5. 0 ₂			
4)	12 moldm ⁻³ HCl solution 1. 1.2 g cm^{-3} 2. 3	that 36.5% (mass percenta) 6.5 g cm^{-3} $3.3.65$	ige) of g cm⁻	HCl. The do	ensity of this 124 g cm ⁻³	solution is 5. 4.4g cm ⁻³		
5) An alloy contains Mg, Al and Cu only. When 0.60 g of a sample of the alloy was allowed to react with dilute NaOH _(aq) , the H ₂ gas liberated occupied a volume of 336 cm ³ under STP conditions. The mass percent of Al in the alloy (Mg - 24, Al - 27, Cu - 64) [Hint :-2 Al + 2 NaOH + 2 H ₂ O \rightarrow 2NaAlO ₂ + 3H ₂] 1. 50%1. 50%2. 40 %5. 35%								
 6) Which one of the following statements regarding some properties of atoms is true? The charge felt by a valence electron of a Na atom is equal to 11 In a particular period, the first ionization energy of an element having higher atomic radius is always less than that with lower atomic radius. According to Pauling's scale, electronegativity of N is greater than that of O. Electron gain enthalpy of Li atom has a higher negative value than that of a Na atom. Electronegativity is a measure of the ability of an isolated atom to attract the electrons towards it self. 								

7) When 100 cm³ of an organic compound which contains C, H and O only was subjected to complete combustion in 700 cm³ of excess O₂ gas, 400 cm³ water vapour and 400 cm³ of CO_{2(g)}were obtained and 200 cm³ of $O_{2(g)}$ was remaining as unreacted. Assuming that all the measurements were taken under same temperature and pressure, the formula of the compound 3. C₄H₈O 1. $C_4H_8O_2$ 2. $C_3H_5O_2$ 5. $C_5 H_8 O$ 4. $C_{3}H_{8}O$ 8) 25 cm³ of a 0.01 moldm⁻³K₂Cr₂O₇ solution required 25 cm³ of a FeI₂ solution for complete reaction. The concentration of FeI₂ solution is 2. 0.02 moldm⁻³ 1. 0.01 moldm^{-3} $3.0.03 \text{ moldm}^{-3}$ 4. 0.06 moldm^{-3} 5. 0.5 moldm^{-3} 9) Which one of the following is not a disproportination reaction? 1. $Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O$ 2. $2H_2O_2 \rightarrow 2H_2O + O_2$ 3. $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ 4. $3S + 6 NaOH \rightarrow 2Na_2S + Na_2SO_3 + 3H_2O$ 5. $Na_2S_2O_3 + 2 HCl \rightarrow 2NaCl + S + SO_2 + H_2O$ 10) According to the given Lewis structure of the ion, the group to which 2. Group 16 3. Group14 4. Group 17 5. Group 18 11) The correct statement regarding the overlapping and hybridization of orbitals. 1. An orbital with a paired electron may overlap with an empty orbital 2. Linear overlap of two P – orbitals will result in the formation of a π bond. 3. An atomic orbital will always overlap with another atomic orbital only. 4. Orbitals of different atoms may undergo hybridization to form hybrid orbitals 5. Overlapping of hybrid orbitals may form π bond 12) The descending order of the radii of Na, B, Si, S, Br⁻ 2. $Br^{-}>S > Na > Si > B$ 1. $Na > B > Si > S > Br^{-}$ 3. Na > Br⁻> Si > S > B 4. $Br^{-} > Na > Si > S > B$ 5. $Br^- > Na > S > Si > B$ 13) The oxidation state, valency and the hybridization of N atom in NO₂F molecule are respectively. 1. $+5, 5, SP^2$ 2. +3, 3, SP² $3, +5, 4, SP^3$ 4. $+4, 4, SP^3$ 5. +5, 4, SP² 14) The incorrect statement regarding ionic compounds 1. Ionic compounds are solids at room temperature 2. When an ionic solid is dissolved in water, the atoms in it are converted to ions and thereby the solution conducts electricity by the movement of ions 3. All the ionic solids do not dissolve in water. 4. There are ionic solids formed by the combination of non – metals without the contribution of any metal. 5. Ionic solids conduct electricity in molten state.

15) The skeletal structure of hydrogen azide (HN₃) is given below.

$$H - N - N - N$$

The number of resonance structures that can be drawn for this is1.22.3.4.5

For each of the question 16 to 20 one or more response out of four responses (a), (b), (c) and (d) given is / are correct. Select the correct response / responses. In accordance with the instruction given on your answer sheet mark.

6. 6

1	2	3	4	5
Only (a) (b) are	Only (b) (c) are	Only (c) (d) are	Only (a) (d) are	The other numbers
correct	correct	correct	correct	correct

16) $Na_2O + CO_2 \rightarrow Na_2CO_3$

The structure of the species involved in the above change are given below

$$\ddot{\mathbf{O}} = \mathbf{C} = \ddot{\mathbf{O}} + \mathbf{O}^{2-} \longrightarrow \overset{\mathbf{O}}{\underset{\mathbf{O}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}}{\overset{\mathcal{O}}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}$$

The correct statement / s regarding the above change is / are

- a) The hybridization of C atom changes from SP^2 to SP^3
- b) The bond length between C, O increases.
- c) In the product CO_3^{2-} , all the three 0 C 0 bonds are equal with a value of 120^0 each.
- d) The oxidation state of C atom changes.

17) The correct statement / statements regarding sub – atomic particles of an atom is / are

- a) Electrons behave as waves and particles simultaneously.
- b) Positive rays are produced from anode electrode.
- c) Electrons can travel in vacuum with the speed of electromagnetic radiations
- d) All the atoms have at least one proton

18) The quantum number / s which are not involved in determining the energy of electrons in an atom

- a) Principal quantum number
- b) azimuthal quantum number
- c) magnetic quantum number associated with a particular azimuthal quantum number
- d) Spin quantum number

19) The correct statement / statements regarding $\rm H-spectrum$

- a) The energy difference between first two lines in each of the series in the increasing order of frequency will increase.
- b) The first ionization energy of hydrogen corresponds to the energy associated with Lyman series.
- c) Each line of the spectrum represents the energy of a particular energy level.
- d) Hydrogen spectrum is a line spectrum

20) Which of the following statements is / are false?

- a) The electron pair geometry around Cl atom in ClO_2^- and ClO_3^- are the same.
- b) The electron pair geometry around I atom in IF_4^- is octahedral
- c) ICl_3 is a polar, T shaped molecule.
- d) In each of SCl_4 , ICl_3 , XeF_4 four atoms are in the same plane

✤ Instructions for questions 21 – 25.

Response	First statement	Second statement
1)	True	True and correctly explains the first
1)		statement.
2)	True	True, but not explain the first
2)		statement correctly
3)	True	False
4)	False	True
5)	False	False

	First Statement	Second statement
21)	Although the electro negativities of C and S	In general, when S character of a hybrid orbital
	have equal values according to Pauling's	and the oxidation number of an atom increase,
	scale, the electro negativity of S in SO_2 is	electro negativity will increase.
	greater than that of C in CH_4	
22)	Boiling point of SO_2 is greater than that	Intermolecular attractions in polar substances
	of <i>CO</i> ₂	are always greater than those in non - polar
		substances.
23)	Covalent character of Li_3N is greater than	When the charge and size of an anion increase,
	that of Li_2O	its polanizability will increase.
24)	Deflection of α particles in an electric	The magnitude of the charge on a α particle is
	field is greater than the deflection of β	greater than the magnitude of charge on a β
	particles in the same.	particle.
25)	Under similar conditions, the electron	In group 17 elements, electron affinities of F,
	gain enthalpy of an element has a value	Cl, and Br follow the order $F > Cl > Br$
	same in magnitude but has an opposite	
	sign of the electron affinity of the same	
	element	