

G.C.E. A/L Examination November - 2018

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Provincial Department of Education, Northern Province.

Grade :- 12 (2020)	Chemistry I	Time :- One hours			
	Part – I				
$N_A = 6.022 \times 10^{23} mol^{-1}$	$N_A = 6.022 \times 10^{23} mol^{-1}$ $h = 6.62 \times 10^{-34}$ Js $C = 3 \times 10^8$ ms ⁻¹ $R = 8.314$ J mol ⁻¹ K^{-1}				
 Answer all questions. 	✤ Answer all questions.				
1. Scientist related with the	discovery of protons,				
1. Neil Bohr 4. Marsden	2. Ernest Rutherford 5. Becquerel	3. James Chadwick			
 Which one of the following statements is true regarding cathode rays? Cathode rays originate from Anode. They are attracted towards the cathode. Cathode rays more in a curved path in magnetic field. These are a type of electromagnetic radiation. Cathode rays does not show wave and particle nature at the same time. 					
3 . Number of neutrons in $\frac{20}{82}$ 1. 82 2. 125		. 115 5. 289			
 Which of the following is least appropriate regarding the isotopes of an element? They have same number of electrons. Have different number of neutrons. Shows similar chemical properties. Have different number of nucleons. Have different number of nucleons. Have same density. 					
5. Oxidation number and va	lency of N in,				
$\begin{array}{c} F - \overset{+}{N} = 0 \\ \downarrow \\ O^{-} \end{array}$					
	3. 4, +1	4. 3, +5 5. 5, +4			
6. Correct increasing order of first ionization enthalpies of $O, Mg, Al, P, S, Cl.$ 1. $Mg < Al < S < P < Cl < O$ 2. $Al < Mg < S < O < P < Cl$ 3. $Al < Mg < S < P < Cl < O$ 4. $Mg < Al < S < P < O < Cl$ 5. $Al < Mg < S < P < O < Cl$					

7. Energy of a photon having wavelength of 150 nm. (Plants constant $h = 6.62 \times 10^{-34} J_s$)1. $1.1 \times 10^{-18} J$ 2. $1.32 \times 10^{-18} J$ 3. $1.38 \times 10^{-17} J$ 4. $1.5 \times 10^{-18} J$ 5. $1.35 \times 10^{-18} J$

8. Least suitable regarding the bonding of atoms.

- 1. s s, s p and p p atomic orbitals linearly overlap to from σ bond.
- 2. By the lateral overlapping of 2 p orbitals π bond is formed.
- 3. $3 Sp^2$ hybridized orbitals of carbon atom differ in size, energy and shape.
- 4. By the overlapping of hybrid orbitals only σ bond from.
- 5. Hybridizing orbitals should belong to the same atom.
- **9**. Correct electronic configuration of (Cr) is?
 - 1. $12^2 25^2 2p^6 3p^6 3d^5 4s^2$ 2. $15^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$ 3. $15^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^1$ 4. $15^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
 - 5. $15^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$
- 10. Consider the following attraction forces among the molecules. Find the best fitting order for increase of strength of attraction.

a) $C_3 H_3 """ C_3 H_3$ b) $N_3 T_4 (N_3 T_3 T_3)$		
b) $Na^{+}_{(aq)}(Na^{+} \text{ mad}; '''' H_2 O)$		
c) $CH_3 COOH$ """ $CH_3 COOH$		
0 	0 	
d) $CH_3 CH_2 - C - CH_3 $ ^{''''''} CH_3	$-C-CH_3$	
1. $a < d < c < b$	2. $a < d < b < c$	3. $b < c < d < a$
4. c < b < d < a	5. $d < a < b < c$	

11. Empirical formula of Glucose molecule is,

 1. $C_6 H_{12} O_6$ 2. $CH_2 O$ 3. $C_2 H_4 O_2$ 4. $C_{12} H_{22} O_{11}$ 5. CHO

12. Find the mass fraction of *Cu* in an alloy containing *8g Ni*, *12g Cu*, *20g Zn* in their pure state.

 1. 0.25
 2. 0.2
 3. 0.3
 4. 0.15
 5. 0.5

13. Second ionization enthalpy of an element X is defined as,

- 1. Energy needed to remove two moles of electrons from one mole of gaseous X atoms.
- 2. Energy needed to remove one mole electrons from one mole of X^+ gaseous ions.
- 3. Energy needed to remove one mole of electrons from one mole of X^{2+} gaseous ions.
- 4. Energy needed to add one mole of electrons to one mole gaseous X^+ ions.
- 5. Energy needed to add two moles of electrons to one mole of X^{2+} gaseous ions.

14. Electron represented by the following set of quantum number $[n = 3, l = 1, ml = 0, m_s =$

 $-\frac{1}{2}$

1. 1s electron	2. 2s electron
4. 3s electron	5. 3p electron

3. 2p electron

15. Correct increasing order of boiling point from the given sets.

	-	 -
1. $SiH_4 < PH_3 <$	$< H_2 S < HCl$	$2. SiH_4 < PH_3 < HCl < H_2S$
3. <i>HCl</i> < <i>H</i> ₂ <i>S</i> <	: SiH ₄ < PH ₃	$4. HCl < H_2S < PH_3 < SiH_4$
5. <i>H₂S</i> < <i>HCl</i> <	$PH_3 < SiH_4$	

Summary of instructions for question from 16 – 20.

1	2	3	4	5
a,b only correct	b,c only correct	c,d only correct	a,d only correct	Any other Answer

16. Which one of the following statement/s is / are true regarding ions & atoms?

- a) Cations formed by *s*, *p* block elements are always smaller than their neutral atoms.
- b) Anions formed by *s*, *p* block elements are always larger than that of their neutral atoms.
- c) Non metal with higher non metallic character in the 3rd period has the highest ionic radius.
- d) Always Ions such as P^{3-} , S^{2-} , Cl^- have same number of electrons as Ar.

17. **Incorrect** regarding the molecule, $CH_3 CH = CH_2$

- a) All three carbon atoms are sp^3 hybridized.
- b) In the above molecule carbon atoms with sp^3 , sp^2 hybridization exists.
- c) All three carbon atoms are found in the same plane.
- d) None of the carbon atoms are found in the same plane.

18. Correct statement with respect to Ionic compounds?

- a) All the ionic compounds are water soluble.
- b) Ionic compounds generally have higher melting & boiling points.
- c) All the ionic compounds exist at solid state in room temperature.
- d) When *NaCl* crystal is added to water there is ion dipole interaction forms between water molecule and *Na*⁺ ion.

19. Incorrect statement regarding Hydrogen spectrum?

- a) In it "Paschen" & "Bracket" series are found in the IR region.
- b) Information regarding energy levels & sub energy levels are obtained from the hydrogen emission spectrum.
- c) Transition of electron between n = 4 to n = 2 is relevant to the blue colour line of the Balmer series.
- d) Energy difference between the 2nd & 3rd lines of Lyman. Series is found as same as that of 3rd & 4th lines of Balmer series.

3

20. Which of the following is/are having isoelectronic configuration?

a) Cr^{3+} b) Sc c) Mn^{2+} d) V^{2+}

Following the introduction given for question 21 – 25.

First statement	Second statement	Response
True	True and correctly explains	1
	the first statement	
True	True, but does not explain	2
	the first statement	
True	False	3
False	True	4
False	False	5

	First statement	Second statement
21.	Cathode rays do not deflect towards	Cathode rays are negatively charged.
	neither north pole nor south pole but a	
	curved path is preferred in the magnetic	
	field.	
22.	Electron affinity of Nitrogen is lesser	When carbon accepts an electron it gains
	than that of carbon's	stable electronic configuration however
		nitrogen does not.
23.	$\mathrm{KOH}_{(\mathrm{s})}$ is an ionic compound.	When $\text{KOH}_{(s)}$ dissolves in water
		$K^+_{(aq)}$, $OH^{(aq)}$ are formed.
24.	SO_3 & NH ₃ have same molecular shape.	SO ₃ & NH ₃ have same number of bond pair
		electrons.
25.	Size of gaseous state Ca^{2+} is greater	Effective nuclear charge of Mg is greater
	than that of gaseous state Mg^{2+}	than that of Ca^{2+} .