G.C.E. A/L Examination November - 2017

Conducted by Field Work Centre, Thondaimanaru

In Collaboration with

Provincial Department of Education Northern Province.

	Chemistry I	Grade :- 12 (2019)	Time :- Three hours
		Part -I	<u> </u>
*	$N_A = 6.022 \times 10^{23} mol^{-1}$ Answer all the questions	$h = 6.62 \times 10^{-34} \text{ Js}$	$C = 3 \times 10^8 \text{ ms}^{-1}$
1.	Which one of the following electrons?	scientist is not connected	d directly to explain the behavior of
	 Neil Bohr Dalton 	2) Aufbau 5) Rutherford	3) Pauli
2.	 What is false regarding cathoo 1) Cathode rays creates chemi 2) Heat is generated when str 3) Green in colour. 4) Deflect in both electric and 5) Make fluorescence with th 	de rays? ical change. ike with matter. l magnetic fields . e collision of certain matter	
3.	The set of quantum numbers 1) 3, 2, 2, $+ \frac{1}{2}$ 4) 4, 1, 0, $+ \frac{1}{2}$	for the outermost election f 2) 4, 1, 1, $+ \frac{1}{2}$ 5) 4, 0, 0, $+ \frac{1}{2}$	For copper in its ground state is, 3) 4, 2, 2, $+ \frac{1}{2}$
4.	First ionization energy of pota be produced by potassium ato 1) 1.44×10^{16} 2) 1.44	assium is 418 kJmol ⁻¹ . The source of the second state by absorbed x 10^{17} 3) 1.44×10^{22}	maximum number of K^+ ions that can orbing 1J of energy is, 4) $1.44 \ge 10^{18}$ 5) $1.44 \ge 10^{20}$
5.	 The skeletal structure of a lengths is given below The respective order of hybrid this compound is, 1) SP², SP², SP, SP² 4) SP², SP, SP², SP 	chemical species that hav $N_1 - C - N_2 - N_3 - N_3$ idization states of <i>N</i> atoms 2) SP, SP^2, SP^2, SP^2 5) SP, SP^2, SP^2, SP	e approximately equal $N - N$ bond N_4 in the most stable Lewis structure of 3) SP, SP^2 , SP, SP^2
6.	An instance that can exist the 1) $I_{2(s)}$ dissolves in water 4) $H_2S_{(g)}$ dissolves in water	type of secondary interaction 2) $CO_{2(g)}$ dissolves in v 5) $NH_{3(g)}$ dissolves in w	on as dipole – induced dipole. vater 3) <i>MgCl</i> ₂ dissolves in water vater

7. The correct increasing order of ionic rad 1) $Mg^{2+} < Ne < O^{2-} < N^{3-} < H^{-}$ 3) $Mg^{2+} < Ne < H^{-} < N^{3-} < O^{2-}$ 5) $Ne < Mg^{2+} < H^{-} < N^{3-} < O^{2-}$	ii is, 2) $H^- < Mg^{2+} < Ne < N^{3-} < O^{2-}$ 4) $Mg^{2+} < H^- < O^{2-} < N^{3-} < Ne$
8. Which one of the following pairs of ions 1) $Cr_2O_7^{2-}$, Mno_4^- 2) $Cr_2O_4^{2-}$ 4) MnO_4^- , MnO_4^{2-} 5) MnO_4^{2-}	show + 6 oxidation. State of central atom. 7^{2-} , $C_2O_4^{2-}$ 3) MnO_4^{-} , CrO_4^{2-} 4^{2-} , $Cr_2O_7^{2-}$
 9. Which of the following compounds has 1) <i>LiCl</i> 2) <i>HF</i> 	the highest ionic character, 3) <i>LiBr</i> 4) <i>RbCl</i> 5) <i>HI</i>
 10. Data that can be directly obtained from 1) Bond length of C - 0 3) Shape of the ion 5) Values of the bond angles of OĈO. 	 the resonance structures of CO₃²⁻ is, 2) Hybridization of atoms 4) Formal charge on atoms
11. Number of glucose molecules found in 1) 6.022×10^{23} 2) 3.012 4) 3.011×10^{23} 5) 3.012	1.8 <i>g</i> of Glucose [$C_6 H_{12} O_6$] is, x 10 ²¹ 3) 6.022 x 10 ²¹ x 10 ²²
12. Which of the following compounds has 1) NO_2F 2) N_2O_3	maximum electro negativity of <i>N</i> . 3) N_2H_4 4) <i>NOCl</i> 5) NH_4^+
13. The group of compounds do not havin1) $BeCl_2$, GeF_2 , SCl_2 2) BeC 4) $AlCl_3$, GeF_2 , $BeCl_2$ 5) GeC	g octet electron of central atom. F_2 , GeF_2 , Cl_2O 3) BCl_3 , NCl_3 , CH_4 F_2 , NO_2 , PH_3
14. Which of the following represents t spectrum of hydrogen.	ne arrangement of the emission lines in the atomic
1) $$ E 2) $$	
4) E 5) Non spec	e of above are related to line representation of rum .
 15. Which of the following statement is fals 1) Compounds can form only σ bonds 2) σ bond is stronger than π bond. 3) π bond can be a single bond betwee 4) π bonds are formed by P orbitals on 5) π bonds are not formed by the overlapped 	e regarding σ and π bonds. I two atoms. y. apping of hybrid orbitals.

Instructions for questions 16 - 20

1	2	3	4	5
only (a) and (b) are correct	only (b) and (c) are correct	only (c) and (d) are correct	only (a) and (d) are	any other number or combination is
			correct	correct

16. Which of the following statement (s) is / are true regarding the formation of chemical bond.

- a) Orbital having one electron can overlap with another orbital having one electron.
- b) Orbital having 2 electrons can overlap with another orbital having 2 electrons.
- c) Orbital having 2 electrons can overlap with another orbital having no electrons.
- d) Linear overlapping of electrons results in π bond formation.

17. Which of the following statements regarding the periodic properties of elements is / true.

- a) Bond angle of $O_3 > H_2 O$
- b) Ionic property increases in the order of AgF < AgCl < AgBr < AgI
- c) The standard enthalpy change of first ionization of Ar > F
- d) Ionic radius of $H^- > S^2$

18. Which of the following statement (s) regarding positive rays is / are false.

- a) Path of the positive ray can be altered by magnetic field
- b) e_{m} ratio of positive ray is constant.
- c) The positive ray particles are produced from the anode material of the discharge tube.
- d) Positive rays can give glow on ZnS screen.

19. Which of the following statements is / are true regarding the central atom of the SP^3 hybridized molecule.

- a) Geometry of the molecule should be tetrahedral.
- b) Electron pair geometry around the central atom is tetrahedral.
- c) Geometry of the molecule can be tetrahedral, pyramidal or angular.
- d) Bond angles should be equal or higher than 109°.
- 20. Compound having highest oxidation state S is / are,

a) $Na_2S_4O_6$ b) $Na_2S_2O_3$ c) $Na_2S_2O_8$ d) SO_2O_8	-	0 0		
	a) $Na_2S_4O_6$	b) <i>Na</i> ₂ <i>S</i> ₂ <i>O</i> ₃	c) $Na_2S_2O_8$	d) <i>SO</i> ₂ <i>Cl</i> ₂

Instructions for questions 21 - 25

	First statement	Second statement
1)	True	Ture and correctly explains
2)	True	Ture but does not explain correctly
3)	True	False
4)	False	Ture
5)	False	False

	First statement	Second statement
21.	$\begin{array}{c} H \rightarrow \begin{array}{c} G \rightarrow H \\ H \rightarrow H \end{array} H \rightarrow \begin{array}{c} G \rightarrow H \rightarrow H \\ H \rightarrow \begin{array}{c} G \rightarrow H \rightarrow H \end{array} H \rightarrow \begin{array}{c} G \rightarrow H \rightarrow H \rightarrow H \rightarrow \begin{array}{c} G \rightarrow H \rightarrow H \rightarrow H \rightarrow \begin{array}{c} G \rightarrow H \rightarrow$	When drawing resonance structure only delocalization of electrons happens.
22.	<i>Cr</i> is a harder metal than <i>Na</i>	Cr Provides six valance electrons to its metallic bond while Na atom provides only one valance electrons for its metallic lattice.
23.	$MgCl_2$ is an ionic substance	$MgCl_2$ can conduct electricity in aqueous state.
24.	SO_2 and CO_3^{2-} are isoelectronic species.	Both S & C are in SP^2 hybridized state.
25.	PCl_5 is stable but NCl_5 is unstable	Maximum valency of <i>N</i> is 5.