\section*{G.C.E. A/L Examination March - 2017 \\ Conducted by Field Work Centre, Thondaimanaru In Collaboration with \\ FWC Provincial Department of Education, Northern Province. \\ | Grade :- $\mathbf{1 2}$ (2018) | CHEMISTRY | Time :- Three hours |
| :--- | :--- | :--- |}

Part- I

> Answer the all questions.
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}, \mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

1) How many electrons can have $l=2$ for $n=3$
(1) 5
(2) 2
(3) 12
(4) 10
(5) 14
2) XY_{3} is the molecule produced by the elements X and Y . Which is false statement in the following on the basis of the structure given below.

(1) Electro negativity of X is greater than Y
(2) The resultant dispole moment is not zero.
(3) Electron geometry and shape are tetrahedral and trigonal pyramid respectively.
(4) X and Y are non metal
(5) Element X is in group VI.
3) $\mathrm{C}^{\mathrm{a}} \mathrm{H}_{2}=\mathrm{C}^{\mathrm{b}}=\mathrm{C}^{\mathrm{c}} \mathrm{H}-\mathrm{C}^{\mathrm{d}} \mathrm{H}_{3}$ Which is thee correct order of electrone gativity of C in the molecule.
(1) $\mathrm{c}>\mathrm{d}>\mathrm{b}>\mathrm{a}$
4) $b>c>d>a$
5) $b>c>a>d$
6) $c>a>b>d$
7) $a>d>b>c$
8) Which is not the oxidation number of C atoms in the following molecule.

9) Composition of Fe^{2+} in an aqueous solution is 14 ppm . What is the concentration of Fe^{2+} in the solution in mmoldm ${ }^{-3}$?
(1) 2.5
(2) 0.25
(3) 0.025
(4) 0.50
(5) 1.00
10) Standard enthalpy of combustion of $\mathrm{Al}_{(\mathrm{s})}, \mathrm{S}_{(\mathrm{s})}$ and $\mathrm{SO}_{2(\mathrm{~g})}$ are a,b and c kjmol ${ }^{-1}$ standard enthalpy of formation of $\quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $\mathrm{d} \mathrm{kJmol}^{-1}$

$$
\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{SO}_{3(\mathrm{~s})} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{~s})}
$$

Enthalpy change of the above reaction is

1. $d-2 a-3 b-3 c$
2. $2 a+3 b+3 c-d$
3. $a-2 b+c+d$
4. $d-a-b-c$
5. No suitable answer.,
7) Which of the following statement is false?
(1) The highest first ionization element is He
(2) Elements in period 4 and 6 consist of elements in three physical states.
(3) $\mathrm{CO}_{2(s)}$ is non polar molecular lattice
(4) Non - polar covalent bond exist is in liquid of Argon.
(5) $\mathrm{H}_{2} \mathrm{O}_{2}$ function as oxidizing agents and disinfectant.
8) $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ reacts with KMnO_{4} in acidic medium and forms $\mathrm{Mn}^{2+}, \mathrm{K}^{+}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ as the products stocniometric radio between and KMnO_{4} and $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(1) $4: 5$
(2) $8: 5$
(3) $5: 4$
(4) $4: 10$
(5) $1: 5$
9) Number of atoms of oxygen in a drop of water coming from burette.
10) $1 / 18^{\mathrm{x}} 6.022 \times 10^{23}$
11) $1 / 18^{\times} 6.022 \times 10^{22}$
12) $5 / 18^{\mathrm{x}} 6.022 \times 10^{21}$
13) $5 / 18^{x} 6.022 \times 10^{23}$
14) $1 / 18^{x} 6.022 \times 10^{21}$
15) Which of the following equations is not redox reaction.
16) $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
17) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+2 \mathrm{NaI} \rightarrow \mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{SO}_{4}$
18) $\mathrm{Mg}+\mathrm{ZnSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Zn}$
19) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
20) $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
21) $\mathrm{CH}_{3} \mathrm{OH}_{(2)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \Delta \mathrm{H}=+35.3 \mathrm{kJmol}^{-1}$

The equation represents the equilibrium between liquid methanol and methanol vapour of 338 K given the $\Delta \mathrm{H}=+35.3 \mathrm{kJmol}^{-1}$ enthropy change when methanol is vaporized is,

1) $-104.4 \mathrm{JK}^{-1} \mathrm{mo}^{-1}$
2) $+104.4 \mathrm{JK}^{-1} \mathrm{mo}^{-1}$
3) $+208.8 \mathrm{JK}^{-1} \mathrm{mo}^{-1}$
4) $+52.2 \mathrm{JK}^{-1} \mathrm{mo}^{-1}$
5) $208.8 \mathrm{JK}^{-1} \mathrm{mo}^{-1}$
6) 0.025 mol of a metal sulphate has a mass of 4.60 g . Identify the metal ion in the sample.
(1) Ca^{2+}
(2) Be^{2+}
(3) Sr^{2+}
(4) Ba^{2+}
(5) Mg^{2+}
7) Which of the following statements is false?
1. No exchange of energy, matter or work in an isolated systems.
2. Gases show ideal behaviour at high temperatures and low pressure.
3. Ionic compounds do not conduct electricity in solid state.
4. Heat capacity is an intensive property.
5. Standard enthalpy of $\mathrm{Ca}_{(\mathrm{s})}$ is zero.
14) Boiling points of hydrides of P block elements in groups $14,15,16$ and 17 are indicated by the graphs $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z the correct order of the groups $14,15,16$ and 17 respectively.
15) W, X, Y, Z
16) Z, X, W, Y
17) X, Y, W, Y
18) Z, Y, X, W
19) W, Z, X, Y

20) 5.20 g sample of $\mathrm{Cu}-\mathrm{Zn}$ alloys reacts with HCl and to produce hydrogen gas If the hydrogen gas has a volume $0.50 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ and $1 \mathrm{x} 105 \mathrm{Nm}^{-2}$. What is the percentage of Zn in the alloy $(\mathrm{C} \mathrm{u}$ does not react with HCl$)(\mathrm{Zn}=65)$
(1) 33.3%
(2) 25%
(3) 50%
(4) 75%
(5) 66.7%

For each the questions $\mathbf{1 6}$ to 20 follow this instructions

(1)	(2)	(3)	(4)	(5)
Only	Only	Only	Only	Any other number
(a) \& (b)	(b) \& (c)	(c) \& (d)	(d) \& (a)	or combination of
are correct	are correct	are correct	are correct	response is correct

16) Which of the following statements indicating the increasing order of the properties is or are true.
(a) $\mathrm{C}-\mathrm{O}$ bond length $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
(b) Electro negativity of N atom $\mathrm{NH}_{3}<\mathrm{NO}_{3}{ }^{-}<\mathrm{NO}_{2}^{-}$
(c) Bond angle $\mathrm{S}_{1} \mathrm{Cl}_{4}<\mathrm{ICl}_{4}^{-}<\mathrm{NCl}_{3}$
(d) Melting points $\mathrm{KCl}<\mathrm{NaCl}<\mathrm{LiCl}$
17) Which of the following statement regarding to $\mathrm{NO}_{2}{ }^{+}$ion is or are true?
(a), It has two $\mathrm{N}=\mathrm{O}$ bond.
(b) $\mathrm{NO}_{2}{ }^{+}$and $\mathrm{H}_{2} \mathrm{~S}$ have the same shape
(c) $\mathrm{N}_{2} \mathrm{O}_{5}$ (s) contains NO_{2}^{+}and NO_{3}^{-}ions.
(d) N has no lone pair electrons.
18) Which of the following ions has three unpaired electrons.
(a) Cr^{3+}
(b) Co^{2+}
(c) Fe^{3+}
(d) Ni^{2+}
19) Secondary forces that found in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
(a) Hydrogen bond
(b) London force
(c) Dipole - dipole interaction
(d) convalent bond
20) Which of the following reaction releases energy.
(a) $\mathrm{CaC}_{2} \mathrm{O}_{4(\mathrm{~s})} \rightarrow \mathrm{CaCO}_{3}+\mathrm{CO}_{(\mathrm{s})}$
(b) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
(c) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(d) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{~m})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

* In question number 21 to 25 two statements are given in respect of each questions.

Response	First statement	Second statement
(1)	True	True and correctly explains the first statement
(2)	True	True, but does not explain the first statement
(3)	True	False
(4)	False	True
(5)	False	False

	First statement	Second statements
21)	$\mathrm{Na}(\mathrm{s})$ forms $\mathrm{Na}_{3} \mathrm{~N}(\mathrm{~s})$ when heated with $\mathrm{N}_{2}(\mathrm{~g})$	$\mathrm{N} \equiv \mathrm{N}$ bond energy is high.
22)	$\mathrm{I}_{2}(\mathrm{~s})$ is more soluble in $\mathrm{KI}(\mathrm{aq})$	I_{3}^{-}is stable.
23)	Boiling point of Xe is higher than CH_{4}	Molarmass of Xe is greater than CH_{4}
24)	Reactions that have negative free energy change ($\Delta \mathrm{G}<\mathrm{O}$) are spontaneous.	$\Delta \mathrm{G}$ of a reaction that has negative values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ is always negative
25)	BeO reacts with strong acid and strong base	BeO is amphoteric

