	nducted by Field Work	Centre, Thondaima	naru	
In Collaboration with Provincial Department of Education				
	Northern	Province		
FWC	Term Examination	on, July - 2019		
Grade – 12 (2020) Chemistry I Time : 1 Hours			1 Hours	
	Part - I			
$N_A = 6.022 \times 10^{23} mc$	l^{-1} $h = 6.626 \times 10^{-34}$ Js	$C = 3 \times 10^8 \text{ ms}^{-1} \qquad R$	$R = 8.314 \text{J} \ mol^{-1} \ K^{-1}$	
✤ Answer all questions.				
 The credit of discoverin scientists, 	g the charge of the electron a	nd discovering neutron	respectively goes to the	
1. Thomson and Chadwid	ck 2.	Rutherford and Chadwich	X	
3. Chadwick and Thomso		Robert milikan and Thon	ison.	
5. Robert milikan and cha	adwick			
2) Which out of the given s energy of Aluminum?	set of quantum numbers repre-	ent the electron removed	d in the Third ionization	
	$m_l = +1$ $m_s = +\frac{1}{2}$			
	$m_l = 0$ $m_s = +\frac{1}{2}$ $m_l = 0$ $m_s = +\frac{1}{2}$			
	$m_l = +1$ $m_s = +\frac{1}{2}$			
3) The IUPAC name of this	compound is,			
H	0H 			
$H_2C = C$	$-CH - CH - NH_2$ CH_3			
1 1 amina 1 manta	5			
 4 - amine - 1 - pentanol. 4 - amino - 4 - methyl - 1 - buten - 3 - ol 				
2. $4 = \operatorname{amino} - 4 = \operatorname{menty} 1 = 1 = \operatorname{outen} - 3 = \operatorname{or}$ 3. $4 = \operatorname{amino} - 1 = \operatorname{penten} - 3 = \operatorname{ol}$				
4. $2 - amino - 4 - penten - 3 - ol$				
5. $2 - amino - 4 - penter$	n - 3 - ol			
4) The concentration of Mn^{2+} in moldm ⁻³ , If there is no change in volume when 50 cm ³ of 0.08 moldm ⁻³ SnC ₂ O ₄ solution is mixed with 50 cm ³ of 0.12 moldm ⁻³ H ⁺ / KMnO ₄ ?				
1. 0.032 2. 0.		4. 0.016	5. 0.32	
5) Which of the following c	ould not be used to distinguish	Ba $(NO_3)_2$ and Ba (OH)	2 ?	
1. $K_2 Cr_2 O_{7(aq)}$	$2. \text{ AgNO}_{3(aq)}$	$3. K_2 CO_{3(aq)}$		
1. $\mathbf{K}_2 \cup \mathbf{C}_2 \cup \mathbf{C}_{7(aq)}$)	

6) In which of the following reactions both ΔH° and ΔS° are positive at 25 °C? 1. $2H_{2(g)} + O_{2(g)}$ $2H_2O_{(1)}$ 2. $H_2O_{(1)}$ $H_2O_{(g)}$ 3. $CO_{2(g)} + CaO_{(s)}$ CaCO_{3(s)} 4. $2SO_{2(g)} + O_{2(g)}$ $2SO_{3(g)}$ 5. $NH_{3(g)} + HCl_{(g)}$ NH₄Cl_(s) 7) Molecular formula of compound A is C_6H_{12} . It reacts with Br_2 to form compound B with molecular formula $C_6H_{12}Br_2$. When B is heated with alcoholic KOH compound with molecular formula C_6H_{10} is formed, which does not show optical isomerism and reacts with Cu₂Cl₂ / NH₃ to give a reddish brown precipitate. The compound A can be, Η 2. $CH_3CH_2CH_2CH_2 - C = CH_2$ 1. $CH_3 - \overset{|}{\overset{C}{C}} - CH_2CH_3$ CH_3 \downarrow 4. $CH_3CH_2CH_2 - C = CH_2$ $HC = CH_2$ 3. $CH_3CH_2CH_2CH = CH - CH_3$ 5. $CH_3CH = C - CH_2CH_3$ | *CH*₃ 8) The effective nuclear charge felt by the valence electron in sodium (Na) is, [Na z = 11 and relative atomic mass = 23] 1. equal to +112. equal to 233. less than +114. less than 23 5. greater than +119) Standard Gibbs energy changes for the reaction $2 CuO_{(s)} \rightarrow Cu_2O_{(s)} + \frac{1}{2} O_{2(g)}$ at two different temperatures are given below. $\Delta G^{\emptyset} / \text{kJmol}^{-1}$. T/ K - 80.6 1300 1200 - 60.4 The standard entropy of the reaction is, $2. - 202 \text{ J K}^{-1} \text{ mol}^{-1}$ 1. 202 J K⁻¹ mol⁻¹ 3. 40.2 J K^{-1} mol⁻¹ 4. - 242 J K⁻¹ mol⁻¹ 5. 20.2 J K⁻¹ mol⁻¹ 10) A balloon is to be filled with a known amount of hydrogen gas at room temperature. At atmospheric pressure (100 KPa). The gas occupies 2.5 dm³ volume. What would be the volume of the balloon when the pressure inside is 20 KPa at the same temperature? 1. 12.5 m^3 2. 12.5 dm³ 4. 50 dm^3 $5.2.5 \,\mathrm{dm^3}$ $3.25 \, \mathrm{dm}^3$ 11) Which of the following produces an immediate precipitate with ammonical AgNO₃? 1. $CH_3 CH = CH Cl$ 2. (CH₃)₃CCl 3. C₂H₅Cl 4. (CH₃CH₂)₂ CHI 5. C₆H₅I

12) Which of the following statements is false with regard to sulfur and its compounds?

- 1. Sulfur reacts with $H_2SO_{4(1)}$ giving SO_2 as one of the products.
- 2. dil H_2SO_4 can act as a strong acid and oxidizing agent.
- 3. SO_2 can act both as an oxidizing agent and as a reducing agent.
- 4. thiosulfuric acid can decompose to produce a sulphur and SO₂ products in aqueous solutions.
- 5. Sulfur is a metal with oxidation states in the range -2 to 6.

13) 0.3 g of a mixture containing NaBr and KBr was dissolved in water and treated. In dil HNO_3 and aqueous AgNO₃. In the quantitative analysis, if 0.564 g and AgBr was formed, the mass percentage of KBr in the initial mixture is.

[K-39 Na-23	Br - 80	Ag – 108]	
1. 22.31 %		2. 20.40 %	3. 24.52 %
4. 30. 42 %		5. 21. 2 %	

14) Which of the following statements is false with regard to NH_3 ?

- 1. NH_3 reacts with Mg to give $Mg_3 N_2$ and H_2 gas.
- 2. NH_3 gives a blue colour with red littmus paper.
- 3. NH_3 can act oxidizing agent.
- 4. NH_3 reacts with CuO to give Cu and H_2 gas.
- 5. NH_3 can act as acid and base.

15) The kinetic molecular theory equation for an ideal gas is $PV = \frac{1}{3}m N\overline{C^2}$. Which of the following statement is true for a sample of an ideal gas?

- 1. $\overline{C^2}$ increases with P at constant temperature.
- 2. PV is independent of the number of moles.
- 3. $\overline{C^2}$ is independent to temperature.
- 4. $\overline{C^2}$ increases if more molecules of the gas are introduced into the sample at constant temperature.
- 5. $\overline{C^2}$ is a constant at constant temperature.
- For each of the question 16 to 20 one or more response out of four responses (a), (b), (c) and (d) given is / are correct. Select the correct responses / responses. In accordance with the instruction given on your answer sheet mark.

1	2	3	4	5
Only (a) (b) are	Only (b) (c) are	Only (c) (d) are	Only (a) (d) are	The other numbers
correct	correct	correct	correct	correct

16) Which of the following statements is / are false regarding the colours of complexes by 3d transition elements?

a) $[Zn(NH_3)_4]^{2+}$ is colourless

- b) $[CuCl(OH_2)_5]^+$ is green
- c) $[CrCl_6]^{3-}$ is blue violet.
- d) $[Fe(H_2O)_6]^{2+}$ is yellow brown.

17) Which of the following statement is / are true.

- a) $CH_3 CH = CH_2$ reacts with R_2O_2 / HI and gives the major product $CH_3 CH_2 CH_2 I$.
- b) Alkenes react with cold, alkaline dilute KMnO₄ solution to produce diols.
- c) Geometrical iosmers are diastereomers.
- d) $CH_3 CH \equiv CH$ react with NaNH₂ and gives $CH_3 CH \equiv C$ Na and H_2 .

18) Which of the following reaction steps is/ are most unlikely to take place, when Cl₂ reacts with CH₄ in the pressure of light?

- → $CH_3Cl + H^{\bullet}$ a) $CH_4 + Cl^{\bullet}$
- a) $CH_4 + Cl$ $CH_3Cl + H$ b) $CH_3Cl + Cl$ $CH_3 + Cl_2$ c) $CH_3 + Cl$ CH_3Cl
- d) $CH_3 + CH_3$ \rightarrow C₂H₆

19) SO_{2(g)} reacts with O_{2(g)} to produce 0.3 mol SO₃ with release of 28.8 kJ of heat. Which of the following statements is/are true for the above system? [S - 32 O - 16]

- a) 96 kJ of heat is required to decompose one mole of $SO_{3(g)}$ into $SO_{2(g)}$ and 0.5 mol $O_{2(g)}$
- b) 1.2 kJ of heat is required to form 8g of $SO_{3(g)}$.
- c) reactants are more thermal stability than products.
- d) Products are more thermal stability than reactants.

20) Which out of given radius variations is / are incorrect?

a)
$$K^+ > Ca^{2+}$$
 b) $O^{2-} > F^-$ c) $Mg^{2+} > S^{2-}$ d) $N > N^{3-}$

✤ Instructions for questions 21 - 25.

Response	First statement	Second statement
1)	True	True and correctly explains the first
1)		statement.
2)	True	True, but not explain the first
2)		statement correctly
3)	True	False
4)	False	True
5)	False	False

	First statement	Second statement
21)	Polarizing power of cation and the	Ionic nature NaF > LiI
	polarizibility of anoin is important in	
	determining the covalent nature of a	
	compound.	
22)	All group I salts are soluble in water.	For almost all ionic solids of group I are soluble
		in water due to the negative Gibbs free energy
		in the solubility process.
23)	Water is an amphoteric compound.	Water has the ability to accept and release a
		proton.
24)	In the presence of Hg ²⁺ and dilute dil	Alkene reacts with $Hg^{2+} / dil H_2SO_4$ gives enol
	H ₂ SO ₄ add to an alkyne producing	compound.
	aldehydes or ketones.	
25)	Standard enthalpy change of sublimation	When the radii of cations increase, resulting in
	is Na < K.	high metallic bonds strength.