

Part- II

Structured essay - A

* Answer all questions on This paper itself.

1.

a) Consider the following chemical species $\mathrm{SO}_{3}, \mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{Mg}_{3} \mathrm{~N}_{2}, \mathrm{KNO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{Z}_{n} \mathrm{O}, \mathrm{PCl}_{5}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{SbCl}_{3}$. Should be Which one of the above species (species should be used only one time)
i. Show amphoteric properties ? \qquad
ii. contains a bond angle of 180° ? \qquad
iii. Which is the most acidic oxide? \qquad
iv. reacts with water to liberate a gas with basic properties?
v. gives a while precipitate when it is dissolved in dil HCl and the solution is diluted with water?
vi. has both ionic bonds and covalent bonds? \qquad
vii. gives yellow coloured solution an addition of con HCl to its aqueous solution?
viii. gives a pale yellow precipitate when dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to its aqueous solution?
($8 \mathrm{x} 2=16$ Marks)
b)
(i) Draw the most acceptable lewis structure for the ion CO_{4}^{2-}.
(5 Marks)
(ii) Draw resonance structures for $\mathrm{CH}_{2} \mathrm{ClNO}_{3}$. The Skeleton is

(iii) Based on the hypothetical lewis structure given below

State the following regarding N, C and P atoms given in the table below

1. Shape around the atom
2. Hybridization of the atom
3. bond angle around the atom

	N	C	P
I. Shape			
II. hybridization			
III. Bond angle			

c) State whether the following statements are true or false (Reasons are not reqired)
i. $\quad \mathrm{ICl}_{2}^{-}$and NO_{2} are both linear in shape
ii. Propene does not exit as geometrical isomers
iii. Hot concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ could be used to distinguish between AgCl and AgBr \qquad
iv. All spontaneous reactions are ethothermic.
02. (a)
i. Write the balanced chemical equation for the reaction given below that occurs in basic medium.

$$
\mathrm{CN}^{-}+\mathrm{OCl}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{N}_{2}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

ii. Calculate the mole fraction of the solute in of the following solution A .

A :- $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of sucrose which has a density of $1.242 \mathrm{gcm}^{-3}$

$$
[C-12, O-16, H-1]
$$

(b) Oxide A is formed bt P block elements. The chemical Reactions of A is given below.

i. Identify the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H .
A :-
B :- \qquad
C :D :- \qquad
E :-F:- \qquad
G :- \qquad
\qquad
ii. Write the balanced equation $\mathrm{A}+\mathrm{Con} \mathrm{HNO}_{3} \rightarrow$
\qquad
03. (a). Consider the following enthalpy and entropy data with to the formation of $\mathrm{SO}_{3(\mathrm{~g})}$ at $25^{\circ} \mathrm{C}$

	$\Delta H_{f}^{\theta} \mathrm{KJmol}^{-1}$	$\mathrm{~S}^{\theta} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{SO}_{3(g)}$	-396	257
$\mathrm{SO}_{2(g)}$	-297	248
$\mathrm{O}_{2(g)}$	0	205

Calculate the following things with regard to the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
i. Standard enthalpy change ?
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Standard entropy change
\qquad
\qquad
\qquad
\qquad
\qquad
iii. Standard Gibbs free energy change. [at $25^{\circ} \mathrm{C}$]
\qquad
\qquad
\qquad
\qquad
\qquad
iv. State the idea with regard to the spontaneity as the above reaction at $25^{\circ} \mathrm{C}$
(b) At T K, $m_{1} g$ of gas A exists in a container under pressure of $P_{1} N m^{-2} m_{2} g$ of gas B was introduced this container without allowing a change in volume and T : then pressure become $P_{2} \mathrm{Nm}^{-2}$ If the molarmass of gas A is M_{A} and that of B is M_{B}.
i. write the Ideal gas equation.
ii. Express the $\frac{P_{1}}{P_{2}}$ ratio in terms m_{1}, m_{2}, M_{A} and M_{B}.
\qquad
\qquad
\qquad
\qquad
\qquad
iii. Mole fraction of $B_{(g)}$ is X_{1}. Express the X_{1} in terms P_{1} and P_{2}
iv. If $P_{1}=5 \times 10^{4} \mathrm{~Pa} P_{2}=9 \times 10^{4} \mathrm{~Pa}$ and $m_{2}=2 m_{1}$ calculate the $\frac{M_{A}}{M_{B}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
v. State the assumption that you used in above parts.
\qquad
04. (a). A, B, C, D, E and F are six isomeric alkenes with seven carbon atoms. hydrogenation of them gives the same product G. G is an Optically active compound.
i. Draw the possible structures for A, B, C, D, E and $F(A, B, C, D, E$ and F should be next be stereoisomer's of each other)

ii. Of the above isomers, which shows geometrical isomers? (not necessary to draw struactures)
\qquad
\qquad
(b). Consider the following reaction sequence,

i) Draw the structures of A, B and C in the given boxes.

ii) What are the reagents D and E.
(D Aliphatic compound)
D :-
E:-
iii) classify each of the reaction in the above sequence as nucleophilic addition $\left(\mathrm{A}_{N}\right)$ Electrophilic addition $\left(A_{E}\right)$ nucleophilic substitution $\left(S_{N}\right)$, Electophilic substitution $\left(S_{E}\right)$, elimination (E) and acid - base (AB) by writing $\left(\mathrm{A}_{N}\right)\left(A_{E}\right)\left(S_{N}\right),\left(S_{E}\right),(\mathrm{E})(\mathrm{AB})$ in the appropriate cages.

Reaction	1	2	3	4
Reaction type				

(c). Write the mechanism for given reaction.

$\xrightarrow[\text { an hydrous } \mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}} X$
write X .

G.C.E. A/L Examination July - 2018
 Conducted by Field Work Centre, Thondaimanaru In Collaboration with

FWC

Provincial Department of Education, Northern Province.

Grade :- 12 (2019) Chemistry - II

Part- II

Essay Question - B

* Answer two questions only

1. a.
i) 21 g of powdered solid MgCO_{3} was added into 4 moldm ${ }^{-3}, 25 \mathrm{~cm}^{3}$ volume of HCl solution in a vessel with negligible heat heat capacity
$\mathrm{MgCO}_{3(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{MgCl}_{2(a q)}+\mathrm{Co}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-40 \mathrm{KJmol}^{-1}$
$\left[\mathrm{MgCO}_{3} \mathrm{M} . \mathrm{W}=84\right]$
Calculate the heat released?
ii) Specific heat capacity and density of HCl acid solution are $4200 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$ and $1.19 \mathrm{~g} \mathrm{~cm}^{-3}$ respectively. Calculate the temperature rise of the above solution?
iii) When 2 g of solid Graphite and 2 g of hydrogen gas are combusted the the released heat are 65.5 KJ and 286 KJ respectively.
iv) If the enthalpy change of $M g_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}$ is $-470 \mathrm{KJmol}^{-1}$. Calculate the formation enthalpy of $\mathrm{MgCO}_{3(\mathrm{~s})}$.
v) If the enthalpy change of $\mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{ZnCl}_{2(a q)}+\mathrm{H}_{2(\mathrm{~g})} \mathrm{is}-270 \mathrm{kJmol}^{-1}$ Calculate the enthalpy changes of the given below reaction

$$
M g_{(s)}+Z n C l_{2(a q)} \rightarrow M g C l_{2(a q)}+Z n_{(s)}
$$

b. A, B and C are 3d elements of the periodic table. A doesn't has unpaired electron in ground stage. B has higher unpaired electrons in ground stage. C has higher melting point.
i) Write the chemicals symbols of A, B and C .
ii) Write the oxyanion and its colours formed by. A,B and C
iii) Write oxide its acidic, basic and amphoteric nature formed by B
iv) Give a compound in which when on thermal decompose gives amphoteric Oxides OF B
v) Give the complex compound from by stable cation of A with NH_{3}
vi) Write the Oxycation and its colours of C .
c. Show how you would carry out the following conversions.
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{CHCH}_{3}$
ii.

iii. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}-\left.\right|_{\mathrm{D}} ^{\mathrm{C}} \mathrm{C}-\left.\right|_{\mathrm{C}} ^{\mathrm{C}} \mathrm{C} \mathrm{CH}_{3}-\mathrm{CH}_{3}$

$$
\left(\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH} \text { is only gives organic compound }\right)
$$

2.

(a) Show how you would carry out the following conversation

(b).
PBr_{3}, dil $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Mg}$, dry ether, $\mathrm{CH}_{3} \mathrm{COCl}, \mathrm{Br}_{2}, \mathrm{CCl}_{4}$, an hydrous $\mathrm{AlCl}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{KOH}$

(c). Using only the chemicals given in the list show how you would carry out the following conversation

Chemical list
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, Water, benzene, Br_{2}, an. hy. $\mathrm{FeBr}_{3}, \mathrm{Mg}$, dry ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{KOH}$, dilH $_{2} \mathrm{So}_{4}, \mathrm{HgSO}_{4}$, Con $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HBr}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

* Cation of D doesn't give precipitate with $\mathrm{H}_{2} \mathrm{~S}$ in acidic medium
* metal of the compound C shows allotrope
I. What are the coloured precipitate in A
II. Identify and write the compound of B,C,D,E,F and G.
(b) Aqueous solution of X contains three anions to the above solution
i. A white precipitate was obtained when adding dilHNO $\mathrm{H}_{3} / \mathrm{BaCl}_{2}$
ii. A colour gas was obtained when adding dill HCl
iii. A dark brown colour solution was obtained when adding $\mathrm{CuSO}_{4(a q)}$

What are the three anions in the solution X ?
(c) Two portions of equal volume of solutions were prepared by dissolving 0.12 kg sample containing Urea, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and CaCl_{2} in water. When adding excess silver acetate and $\operatorname{dil} \mathrm{HNO}_{3}$ to the first portion only 28.7 g AgCl precipitate was obtained. when adding excess $\mathrm{Ba}(\mathrm{OH})_{2}$ to other potion $60.1 \mathrm{~g} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ precipitate was obtained. Sample Contains 2.2 g impurity. Find the mass of NH_{3} Obtained When adding excess NaOH to a 0.12 kg of the Sample.
$[N a-23, C l-35.5, A g-108, B a-137, P-31, O-16, N-14]$.

