

G.C.E. A/L Examination July - 2018

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Provincial Department of Education, Northern Province.

Grade - 12 (2019)	Chemistry - II	Time :- 2 Hours		
Part- II Structured essay - A				
 Answer all question a) Consider the following SO3, Cl2O7, Mg3N2, Few Which one of the about in Show amphotering in the containst a bond in the intervention of the interventintervention of the interven	As on This paper itself. Ing chemical species KNO_3 , $Na_2S_2O_3$, Z_nO , PCl_5 , $Cu(N)$ ove species (species should be used ic properties ? angle of 180°? st acidic oxide? er to liberate a gas with basic pre- ecipitate when it is dissolved in conds and covalent bonds?	<i>IO</i> ₃) ₂ , <i>C</i> ₂ <i>H</i> ₂ , <i>SbCl</i> ₃ . Should be used only one time) operties? dil HCl and the solution is diluted with n HCl to its aqueous solution?		
viii. gives a pale yel	low precipitate when dil <i>H</i> ₂ <i>SO</i> ₄	is added to its aqueous solution?		
b) (i) Draw the most acc (ii) Draw resonance st	ceptable lewis structure for the tructures for <i>CH</i> ₂ <i>ClNO</i> ₃ . The Sk	$(8x2=16 \text{ Marks})$ ion CO_4^{2-} . (5 Marks) $H \qquad 0$ $ \qquad $ $ $ $ $ $ $ $ $ H H		
		(12 Marks)		

1

(iii) Based on the hypothetical lewis structure given below

$$\begin{array}{c} H & O \\ I & H \\ F & -N = C - P - O \\ I \\ 0 \end{array}$$

State the following regarding *N*, *C* and *P* atoms given in the table below

- 1. Shape around the atom
- 2. Hybridization of the atom
- 3. bond angle around the atom

		Ν	С	Р
I.	Shape			
II.	hybridization			
III.	Bond angle			

c) State whether the following statements are true or false (Reasons are not reqired)

i. ICl_2^- and NO_2 are both linear in shape

ii. Propene does not exit as geometrical isomers

iii. Hot concentrated H_2SO_4 could be used to distinguish between AgCl and AgBr

iv. All spontaneous reactions are ethothermic.

02. (a)

i. Write the balanced chemical equation for the reaction given below that occurs in basic medium.

 $CN^{-} + OCl^{-} + OH^{-} \rightarrow CO_{3}^{2-} + N_{2} + Cl^{-} + H_{2}O$

ii. Calculate the mole fraction of the solute in of the following solution A.

A :- $1 \mod dm^{-3}$ aqueous solution of sucrose which has a density of $1.242 \text{g} \text{cm}^{-3}$

[C - 12, O - 16, H - 1]

i. I	dentify the A,B,	C,D,E,F,G and H.			
F	A :		B :		
(C :		D :		
E	3 :		F :		
(3 :		Н :		
ii. V	<i>N</i> rite the balance	ced equation A + Con H	$NO_3 \rightarrow$		
03. (a). Con	isider the follow	ving enthalpy and entro	opy data with to the formation of $SO_{3(g)}$	at 25°C	
		$\Delta H_f^{\theta} K J mol^{-1}$	$S^{\theta} Jmol^{-1}K^{-1}$		
SO_3	S(g)	-396	257		
SO ₂	!(g)	-297	248		
<i>O</i> ₂₍	g)	0	205		
Calc	ulate the follow	ing things with regard t	to the reaction $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$,	
i.	Standard enth	alpy change ?			
ii.	Standard entro	opy change			
iii.	Standard Gibb	s free energy change. [a	at 25°C]		
iv.	State the idea	with regard to the spon	ntaneity as the above reaction at 25°C		

(b) At int	t T K, m_1g of gas A exists in a container under pressure of P_1Nm^{-2} m_2g of gas B was atroduced this container without allowing a change in volume <i>and</i> T: then pressure				
be	come $P_2 Nm^{-2}$ If the molarmass of gas A is M _A and that of B is M _B .				
i.	write the Ideal gas equation.				
ii	. Express the $\frac{P_1}{P_2}$ ratio in terms m_1, m_2, M_A and M_B .				
ii	i. Mole fraction of $B_{(g)}$ is X_1 . Express the X_1 in terms P_1 and P_2				
iv. If $P_1 = 5 \times 10^4 Pa P_2 = 9 \times 10^4 Pa$ and $m_2 = 2m_1$ calculate the $\frac{M_A}{M_B}$					
V	. State the assumption that you used in above parts.				
04. (a). A, I	B, C, D, E and F are six isomeric alkenes with seven carbon atoms. hydrogenation of them				
gıv	ves the same product G. G is an Optically active compound.				
1.	Draw the possible structures for A,B,C,D,E and F (A,B,C,D,E and F should be next be				
	stereoisomer's of each other)				
	D E F				

iii) classify each of the reaction in the above sequence as nucleophilic addition (A_N) Electrophilic addition (A_E) nucleophilic substitution (S_N) , Electophilic substitution (S_E) , elimination (E) and acid - base (AB) by writing (A_N) (A_E) (S_N) , (S_E) , (E) (AB) in the appropriate cages.

Reaction	1	2	3	4
Reaction type				

(c). Write the mechanism for given reaction.

write X.

G.C.E. A/L Examination July - 2018

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

FWC

Provincial Department of Education, Northern Province.

Grad	le :-	12 (2019)	Chemistry - II		
			Part- I	I	
			Essay Quest	ion - B	
♦	 Answer two questions only 				
01. a.	i) 21 g of powdered solid $MgCO_3$ was added into $4moldm^{-3}$, $25cm^3$ volume of HCl solution in a vessel with negligible heat heat capacity $MgCO_{3(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + Co_{2(g)} + H_2O_{(l)} \Delta H = -40KJmol^{-1}$ $[MgCO_3M.W = 84]$ Calculate the heat released?				
	ii)	Specific heat capacity and density of HCl acid solution are $4200JKg^{-1}K^{-1}$ and $1.19g \ cm^{-3}$ respectively. Calculate the temperature rise of the above solution?			
	iii)	When 2g of solid Graphite and 2g of hydrogen gas are combusted the the released heat are 65.5 KJ and 286KJ respectively.			
	iv)	If the enthalpy change of $Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$ is $-470KJmol^{-1}$. Calculate the formation enthalpy of $MgCO_{3(s)}$.			
	v)	If the enthalpy change of $Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}is - 270kJmol^{-1}$ Calculate the enthalpy changes of the given below reaction $Mg_{(s)} + ZnCl_{2(aq)} \rightarrow MgCl_{2(aq)} + Zn_{(s)}$			
b.	b. A,B and C are 3d elements of the periodic table. A doesn't has unpaired electron in ground stage. B has higher unpaired electrons in ground stage. C has higher melting point.				
	i)	Write the ch	emicals symbols of A,B and	C.	
	ii)	Write the ox	yanion and its colours form	ied by. A,I	3 and C
	iii)	Write oxide	its acidic, basic and amphot	eric natu	re formed by B
	iv)	Give a comp	ound in which when on the	rmal deco	ompose gives amphoteric Oxides OF B
	v)	Give the con	plex compound from by st	able catio	n of A with <i>NH</i> ₃
	vi)	Write the Ox	cycation and its colours of C		

c. Show how you would carry out the following conversions.

iii.
$$CH_3C \equiv CH \rightarrow CH_3CH - CH - CH - CH_3$$

 $\begin{vmatrix} & | & | \\ & D & D \\ & D & CH_3 \end{vmatrix}$

 $(CH_3C \equiv CH \text{ is only gives organic compound})$

02.

(a) Show how you would carry out the following conversation

(b).

 PBr_3 , $dil H_2 SO_4$, Mg, dry ether, $CH_3 COCl, Br_2, CCl_4$, an hydrous $AlCl_3$, C_2H_5OH , KOH

(c). Using only the chemicals given in the list show how you would carry out the following conversation

Chemical list

 $CH_3CH_2CH_2Br, Water, benzene, Br_2, an. hy. FeBr_3, Mg, dry ether, C_2H_5OH, KOH, dilH_2So_4, HgSO_4, Con H_2SO_4, HBr, BrCH_2CH_2Br$

- Cation of D doesn't give precipitate with H_2S in acidic medium
- metal of the compound C shows allotrope
 - I. What are the coloured precipitate in A
 - II. Identify and write the compound of B,C,D,E,F and G.
- (b) Aqueous solution of X contains three anions to the above solution
 - i. A white precipitate was obtained when adding dil $HNO_3/BaCl_2$
 - ii. A colour gas was obtained when adding dill*HCl*
 - iii. A dark brown colour solution was obtained when adding $CuSO_{4(aq)}$
 - What are the three anions in the solution X?
- (c) Two portions of equal volume of solutions were prepared by dissolving 0.12 kg sample containing Urea, Na_3PO_4 and $CaCl_2$ in water. When adding excess silver acetate and $dilHNO_3$ to the first portion only 28.7g AgCl precipitate was obtained. when adding excess Ba(OH)₂ to other potion $60.1g Ba_3(PO_4)_2$ precipitate was obtained. Sample Contains 2.2g impurity. Find the mass of NH_3 Obtained When adding excess NaOH to a 0.12kg of the Sample.

[Na - 23, Cl - 35.5, Ag - 108, Ba - 137, P - 31, O - 16, N - 14].