

G.C.E. A/L Examination July - 2018

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Provincial Department of Education, Northern Province.

	Grade :- 12 (2019)	Chemistry I	Time :	Time :- One hours				
Part - I Answer all the questions.								
1.	The outer shell electronic 1) $2S^2 2P^2$ 4) $2S^2 2p^1$	configuration of the higher ele 2) $3S^23p^4$ 5) $3S^23P^3$	ctronegative ele 3) 4 <i>S</i> ² 4 <i>P</i> ⁵					
2.	Maximum number of elec $n = 3, \ell = 2$ and $m_s = -1$ 1) 1 2) 2	trons possible to have for the $\frac{1}{2}$ is, 3) 3	uantum number 4) 4	5) 5				
3.	 3. The IUPAC name of this compound is, <i>O CO</i>₂<i>C</i>₂<i>H</i>₅ <i>H</i> - <i>C</i> - <i>C</i> = <i>C</i> - <i>C</i> - <i>CN</i> <i>C</i>₂<i>H</i>₅ 1) Ethyl 2 - cyano - 2 - ethyl - 5 - formyl pentaoate. 2) Ethyl - 2 - cyano - 2 - ethyl - 5 - oxopentanoatc. 3) ethyl - 2 cyano - 2 - ethyl - 5 - oxo - 3 - pentynoate. 4) ethyl 2 - cyano - 2 - ethyl - 5 - oxo - 3 - pentynoate. 5) ethyl 2 - cyano - 2 - ethyl - 4 - formylbut - 3 y noate.							
4.	 Which of the following statements is false regarding 3rd transition metals and their compounds? 1) Vanadium forms acidic, amphoteric and basic orides. 2) Only one element shows the Oxidation state of +7. 3) Ti, Fe and Cu do exhibit variable valency. 4) Electro negativity of 3rd transition metals is lower than 4S metals. 5) Nis cannot be precipitated by H₂S from acidic solutions. 							
5.	5. When a sample of sodium hydrogen Oxalate $\begin{bmatrix} COOH \\ COONa \end{bmatrix}$ was heated strongly CO, CO_2 1.06g of Na_2Co_3 and 0.9g of H_2O were obtained as the only products. What is the Value of <i>x</i> . [Na - 23C - 12, O - 16, H - 1] 1) 1 2) 2 3) 3 4) 5 5) 10							

6. At 25°C and at constant pressure 12.0g of carbon (graphite) gave a mixture of $CO_{(g)}$ and $CO_{2(g)}$ in combustion with oxygen gas. Heat evolved during this is 324.25*KJ* The mass percentage of carbon that converted to $CO_{(g)}$ is [C -12]

C (graphite)
$$+\frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} \Delta H_{f}^{\circ} = -110.5 K J mol^{-1}$$

C (graphite) $+O_{2(g)} \rightarrow CO_{2(g)} \Delta H_{f}^{\circ} = -395.5 K J mol^{-1}$
1) 10% 2) 20% 3) 25% 4) 50% 5) 75%

- 7. Which of the following produces an immediate precipiate with $NH_3/AgNO_3$ (ammonical $AgNO_3$)?
 - 1) C_6H_5Cl 2) C_6H_5I 3) $(C_6H_5)_3CCl$ 4) $(C_6H_5)_2CHI$ 5) $C_6H_5CH = CHCl$

8. O₂ gas formed by the thermal decomposition of KMnO₄ is collected by down ward displacement of water. The volume of O₂ gas collected in such an experiment at 300K and 1.25 × 10⁵ Pa pressure was 200cm³. Given that the satured vapour pressure of water is 0.05 × 10⁵ Pa at 300K. The mass of O₂ gas collected is (0 -16)
1) 0.307g
2) 0.370g
3) 30.7g

- 1) 0.307g2) 0.370g3) 304) 0.154g5) 1.54g
- 9. Which of the following statements is false regarding the colours of complexes formed by 3d transition elements?
 - 1. $[Co(NH_3)_6]^{2+}$ is yellow brown in colour.
 - 2. $[Fe(No)(H_2O)_5]^{2+}$ is brown in colour.
 - 3. $[MnCl_4]^{2-}$ is Blue Violet in colour.
 - 4. $[FeCl_4]^{-}$ is yellow in colour.
 - 5. $[Ni(NH_3)_6]^{2+}$ is Deep blue in colour.

10. Which of the following statements is / are true.

- a) Bond angle of $ONO : NO_2^+ > NO_2 > NO_2^- > NO_4^{3-}$
- b) *PbCrO*₄ is completely disolve in dil HCl.
- c) Concentrated H_2SO_4 Can act as a strong acid, an oxdizing agent, Reduceding agent and dehydrating agent.
- d) Althrough the electron pair geometry of $SiBr_4$, NF_3 , SCl_2 is tetrahedral.

11. The current stable increasing order of following A,B,C and D carbo - cation is,

$$CH_{2} = CH - CH_{2}$$

$$A$$

$$CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3}$$

$$CH_{2} = CH - CH_{3}$$

$$D$$

$$CH_{2} = CH - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3$$

12. Consider the following reaction scheme

$$CH_{3} CH = CH_{2} \frac{dilH_{2}SO_{4}}{dilH_{2}SO_{4}} \land \frac{PBr_{3}}{B} \land C \qquad CH_{3} - CH - C \equiv C - CH_{3}$$

$$CH_{3} CH = CH_{2} \frac{dilH_{2}SO_{4}}{CH_{3}} \land A \qquad B \qquad C \qquad CH_{3} - CH - C \equiv C - CH_{3}$$

$$CH_{3} CH = CH_{2} \frac{dilH_{2}SO_{4}}{CH_{3}CH_{2}OH} \qquad CH_{3}CH_{2}Br \qquad CH_{3}C \equiv C Br$$

$$C \qquad CH_{3} CH_{2}CH = CH_{3} \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Br$$

$$CH_{3} CH CH_{3} \qquad CH_{3} CH CH_{3} \qquad CH_{3}C \equiv C - Br$$

$$H \qquad Br$$

$$C \qquad CH_{3} CH CH_{3} \qquad CH_{3} CH CH_{3} \qquad CH_{3}C \equiv C Na$$

$$H \qquad CH_{3} CH CH_{3} \qquad CH_{3}CH CH_{3} \qquad CH_{3}C \equiv C Na$$

$$H \qquad CH_{3} CH CH_{3} \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Na$$

$$H \qquad H \qquad Br$$

$$C \qquad CH_{3} CH_{2}CH_{2}OH \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Na$$

$$H \qquad H \qquad Br$$

$$C \qquad CH_{3} CH_{2}CH_{2}OH \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Na$$

$$H \qquad H \qquad Br$$

$$C \qquad CH_{3} CH_{2}CH_{2}OH \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Na$$

$$H \qquad H \qquad Br$$

$$C \qquad CH_{3} CH_{3}CH_{2}CH_{2}OH \qquad CH_{3}CH_{2}CH_{2}Br \qquad CH_{3}C \equiv C Na$$

$$H \qquad H \qquad Br$$

$$C \qquad CH_{3} CH_{3}CH_{2}CH_{2}OH \qquad CH_{3}CH_{2}CH_{2}OH_{2} \qquad CO_{2}(g)$$

$$A_{9}^{A} = 94Jmol^{-1}K^{-1}, \ A G^{0}f[CO_{2}(g)] = -394 KJ mol^{-1}, \ A G^{0}f[CO_{(g)}] = -137 KJ mol^{-1}$$

$$The correct statement is/are$$

$$H \qquad H \qquad SO(2) B and c only$$

$$H \qquad S a only$$

$$H \qquad A and b only$$

$$H \qquad C = -238.99kJmol^{-1}$$

$$H \qquad A and b only$$

$$H \qquad C = 0 \qquad A = 0$$

1	2	3	4	5
a,b only correct	b,c only correct	c,d only correct	a,d only correct	Anyother Answer

16. In which of the following reaction/s involved in benzyl chloride.

a) Nucleophillic substitution.

- b) Hydrolysis
- c) Nucleophilic Addition.
- d) Electrophillic sustitution

17. Which of the following processes/ process are/is endothermic

- a) $2Al_{(g)}^{3+} + 3O_{(g)}^{2-} \rightarrow Al_2O_{3(s)}$ b) $Ca_{(g)}^+ \rightarrow Ca_{(g)}^{2+} + e$ c) $O_{(g)}^- + e \rightarrow O_{(g)}^{2-}$ d) $H_{(aq)}^+ + OH_{(aq)}^- \rightarrow H_2O_{(l)}$

18. According to the kinetic molecular theory, the pressure of a given volume of ideal gas increases with temperature due to which of the following reason(s)?

- a) Inter molecular forces become negligible at high temperatures.
- b) There are no attraction or repulsions between molecules of any temperatures.
- c) In a given time the number of collisions of molecules with the vessel containing the gas increase with increasing temperatures.
- d) Energy loss at collissions is much larger at higher temperatures.
- 19. Which of the following statements is/ are false.
 - a) *POCl*₃ reacts with water and gives H_3PO_4 and HCl.
 - b) 2- butene shows diastereoisomerism.
 - c) $CH_3C \equiv CH$ gives red participate when treated with ammoniacal $CuCl_2$.
 - d) The solubility of group II carbonates decrease down the group primarily due to Increase in hydration enthalpy of the cations.

20. Which of thw following statement is/are true.

- a) The compound *NaOBr* is stable at Room Temperature.
- b) All N O bond lengths in NO_3^- are equal.
- c) Aluminium chloride exists as dimer in the solid state.
- d) H_2O_2 molecule is planar.

First statement	Second statement	Response
True	True and correctly explains	1
	the first statement	
True	True, but does not explain	2
	the first statement	
True	False	3
False	True	4
False	False	5

Following the introduction given for question 21 -25

21. First statement :- White precipitate is formed when adding HCl dropsily to Ba (AlO_2)₂. Secound statement :- $Al(OH)_3$ in water insoluble hydroxide.

22. First statement :- The standard enthalpy of formation of any substance ΔH_f^{θ} is taken as equal to the standard enthalpy of that substance at the same temperature. Secound statement :- The enthalpy values of all elements under Ok condition are taken as zero.

- 23. First statement :- $Na_{(q)}^+$ is more thermal stable than $Na_{(q)}$. Secound statement :- The electronic configuration of Na^+ is $1S^22S^22P^6$ while that of Na is of the form $1S^2 2S^2 2P^6 3s^1$.
- 24. First statement :- Ideal gas has kinetic energy and potential energy. Secound statement :- PV = nRT equation cann't apply to real gas.
- 25. First statement :- 2 -methyl 1 butanol shows enantiomers. Secound statement :- A pair of stereoisomers which are mirror images of each other are known as enantiomers.