| A                         | <u> </u>                                              | <u> </u> | Ξ <u>Λ</u> / | /I <b>F</b>         |            | ninati         | ion July - 2017                         |     |
|---------------------------|-------------------------------------------------------|----------|--------------|---------------------|------------|----------------|-----------------------------------------|-----|
| Λ                         | G.C.E. A/L Examination July - 2017                    |          |              |                     |            |                |                                         |     |
| $\langle \bullet \rangle$ | Conducted by Field Work Centre, Thondaimanaru         |          |              |                     |            |                |                                         |     |
| <b>F</b> WC               | <b>In Collaboration with</b>                          |          |              |                     |            |                |                                         |     |
|                           | Provincial Department of Education Northern Province. |          |              |                     |            |                |                                         |     |
| Che                       | Chemistry - II Grade :- 12 (2018)                     |          |              |                     |            |                |                                         |     |
|                           | Part- II<br>Structured essay - A                      |          |              |                     |            |                |                                         |     |
| * Answer                  | all questi                                            | ons on   | This pa      | per itso            | elf.       |                |                                         |     |
| 01. a) A                  | ist of p –                                            | block    | elements     | of the              | periodic   | table is given | below.                                  |     |
|                           | В                                                     | С        | N            | 0                   | F          | Ne             |                                         |     |
|                           | Al                                                    | Si       | Р            | S                   | Cl         | Ar             |                                         |     |
| 1) W                      | rite non                                              | – meta   | ıllic elem   | nent/s w            | which for  | m heteroaton   | nic covalent lattice with high hardness | ss. |
|                           | •••••                                                 |          |              |                     |            |                |                                         |     |
|                           | -                                                     |          |              |                     |            |                | gy                                      |     |
| -                         |                                                       |          | •            | -                   | · ·        |                |                                         |     |
| 5) E                      | lement wl                                             | hich pr  | oduces a     | cid witl            | h the higl | hest oxidation | n state                                 |     |
| 6) E                      | lement wi                                             | th the   | lowest at    | tomic r             | adius      |                |                                         |     |
| b) Us                     | ing the ba                                            | asic str | ucture of    | HSO <sub>5</sub>    | which      | n is given bel | ow, answer the questions $(i) - (v)$    |     |
|                           | -                                                     |          |              |                     | 0          | -              | -                                       |     |
|                           |                                                       |          | Н·           | -0-0                | - S - 0    |                |                                         |     |
|                           |                                                       |          |              | 0 0                 |            |                |                                         |     |
| 1)                        | D                                                     | . 1      | 1 7 .        |                     | 0          |                |                                         |     |
| 1)                        | 1) Draw acceptable Lewis structure of this ion.       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
| 2)                        | 2) Draw acceptable resonance structures of this ion.  |          |              |                     |            |                |                                         |     |
|                           | · · · · · · · · · · · · · · · · · · ·                 |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          | •••••        | • • • • • • • • • • |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |
|                           |                                                       |          |              |                     |            |                |                                         |     |

- 3) Using VSEPR theory deduce the shapes around the following atoms.
- 4) In the table given below indicate the following

|                             | O attached to H, O | O attached to O,S |
|-----------------------------|--------------------|-------------------|
| i. geometry of the electron |                    |                   |
| pair.                       |                    |                   |
| ii. hybridization           |                    |                   |

5) In the Lewis structure drawn in part (i) above identify the atom / hybridized orbital related to the formation of the following bonds. In the Lewis structure O atoms are named 1,2.

$$\begin{array}{c} 0 \\ I \\ H - 0_1 - 0_2 - S - 0 \\ I \\ 0 \end{array}$$

i.H and  $O_1$ .....ii. $O_1$  and  $O_2$ ....

## c)

- 1) From the list given below select the dipole species.
  - $CH_3CHO$ ,  $AlCl_3$ ,  $H_2O$ ,  $CCl_4$ ,  $BCl_3$
- 2) State the type of intermolecular forces in each of the following pairs.
  - i.  $HCl, H_2O_2$  .....

.....

- ii. Ne, SiCl<sub>4</sub>
- iii. CH<sub>3</sub>CHO, HF

| 02. | a) | A and B are elements belonging to the S block of the periodic table while A reacts with water at ordinary conditions to produce hydroxide, B does not react with water at ordinary conditions but reacts to form hydroxide. Hydroxide of A is more basic than the hydroxide of B. Hydroxide of A is used in the manufacture of soap. Hydroxide of B is used in the production of antacid tablets. |                                                                   |                                                |  |  |  |  |  |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   | Identify A and B                                                  |                                                |  |  |  |  |  |
|     |    | 1)                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                 | В                                              |  |  |  |  |  |
|     |    | 2)                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | Vrite the electronic configuration of A and B. |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |
|     |    | 3)                                                                                                                                                                                                                                                                                                                                                                                                | B) State the relative sizes of A and B in the following.          |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   | i. atomic size                                                    |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   | ii. density                                                       |                                                |  |  |  |  |  |
|     |    | i                                                                                                                                                                                                                                                                                                                                                                                                 | iii. melting point                                                |                                                |  |  |  |  |  |
|     |    | i                                                                                                                                                                                                                                                                                                                                                                                                 | iv. First ionization energy                                       |                                                |  |  |  |  |  |
|     | 5  |                                                                                                                                                                                                                                                                                                                                                                                                   | gas. Write balanced equation.                                     |                                                |  |  |  |  |  |
|     | b) | $Th_{\ell}$                                                                                                                                                                                                                                                                                                                                                                                       | ne following questions are based on Mn, C                         | 'r and their compounds                         |  |  |  |  |  |
|     | 0) | i.                                                                                                                                                                                                                                                                                                                                                                                                | Write the electronic configuration of Mi                          | -                                              |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |
|     |    | ii.                                                                                                                                                                                                                                                                                                                                                                                               | . State the positive oxidation states of Mn.                      |                                                |  |  |  |  |  |
|     |    | iii. State the formulae of the oxides for each of the oxidation states indicated in (ii) above indicate their acidic, basic, amphoteric properties.                                                                                                                                                                                                                                               |                                                                   |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |
|     |    | iv.                                                                                                                                                                                                                                                                                                                                                                                               | v. Write the chemical formulae of the two oxyanions formed by Mn. |                                                |  |  |  |  |  |
|     |    | · · · ·                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                |  |  |  |  |  |

| v.    | Of the anions stated above, write the acts as oxidizing agent in acidic mediu | -                                       | ation where the   | most stable oxyanion   |  |
|-------|-------------------------------------------------------------------------------|-----------------------------------------|-------------------|------------------------|--|
|       |                                                                               |                                         |                   |                        |  |
| vi.   | In aqueous medium state the colour ar                                         | d the formula o                         |                   |                        |  |
| vii   | . What will you observe if small amou                                         | nt of dilute HC                         | l is added to the | above solution.        |  |
| vii   | bove observatio                                                               | olution in (vii) above.<br>on.          |                   |                        |  |
| ix.   | ix. Indicate the observation when NaOH is added to $K_2Cr_2O_{7(aq)}$         |                                         |                   |                        |  |
| X.    | Write balanced equation for the observ                                        | vation stated in                        | (ix) above.       |                        |  |
|       | fly explain the following.<br>losed system                                    |                                         |                   |                        |  |
| 2) Ei | ntropy                                                                        |                                         |                   |                        |  |
| 3) G  | ibbs energy                                                                   |                                         |                   |                        |  |
|       |                                                                               |                                         |                   |                        |  |
|       | nsider the chemical reaction $CaCO_3$ (at 25°C which is given below.          | $s) \rightarrow CaO(s)$                 | $+ CO_2(g)$ and   | d the thermo chemical  |  |
| Che   | mical species                                                                 | CaCO <sub>3</sub>                       | CaO               | <i>CO</i> <sub>2</sub> |  |
| Star  | ndard enthalpy of formation kJ/mol                                            | - 1207                                  | - 635             | -393                   |  |
| Star  | ndard entropy $Jmol^{-1}K^{-1}$                                               | 93                                      | 38                | 214                    |  |
| 1)    | Calculate $\Delta H^{\emptyset}$ for the above reaction                       | n at 25° <i>C</i>                       |                   |                        |  |
|       |                                                                               | •••••                                   |                   |                        |  |
|       |                                                                               | • • • • • • • • • • • • • • • • • • • • |                   |                        |  |
|       |                                                                               |                                         |                   |                        |  |
| 2)    | Calculate $\Delta S^{\emptyset}$ for the above reaction a                     | at 25° <i>C</i> .                       |                   |                        |  |
|       |                                                                               |                                         |                   |                        |  |
|       |                                                                               |                                         |                   |                        |  |
|       |                                                                               | •••••                                   |                   |                        |  |

| i. Write an express                                                                                      | ion for a chemical react                                                              | ion connect $\Delta G$ , $\Delta H$ an                                                   | d ΔS.                                                          |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ii. Calculate $\Delta G^{\emptyset}$                                                                     | for the above reaction a                                                              | ± 25° <i>C</i> .                                                                         |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
| iii. Giving reasons s                                                                                    | tate the spontaneity of the                                                           | he reaction.                                                                             |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
| iv. Calculate the dis                                                                                    | sociation temperature of                                                              | f CaCO <sub>3</sub> .                                                                    |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
| v. State the assump                                                                                      | tion you used in part (i                                                              | v) above.                                                                                |                                                                |
|                                                                                                          |                                                                                       |                                                                                          |                                                                |
| Enthalpies of format                                                                                     | ion of some substances                                                                | are given below.                                                                         |                                                                |
|                                                                                                          | $H_{2}O(l)$                                                                           | $CO_2(g)$                                                                                | $C_4H_{10}(g)$                                                 |
|                                                                                                          | H <sub>2</sub> O ( <i>l</i> )<br>- 286                                                | CO <sub>2</sub> (g)<br>- 394                                                             | C <sub>4</sub> H <sub>10</sub> (g)<br>- 126                    |
| $\Delta H_f^{\emptyset} \ k Jmol^{-1}$                                                                   |                                                                                       | - 394                                                                                    |                                                                |
|                                                                                                          | - 286                                                                                 | - 394                                                                                    | - 126                                                          |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta                                               | - 286                                                                                 | - 394 pustion of $C_4 H_{10}$                                                            | - 126                                                          |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta                                               | - 286                                                                                 | - 394 pustion of $C_4 H_{10}$                                                            | - 126                                                          |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta                                               | - 286                                                                                 | - 394 pustion of $C_4 H_{10}$                                                            | - 126                                                          |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu                           | - 286<br>ndard enthalpy of comb                                                       | - 394 pustion of $C_4 H_{10}$                                                            | - 126<br>of 800 <i>cm</i> <sup>3</sup> of water                |
| <ul> <li>ΔH<sup>Ø</sup><sub>f</sub> kJmol<sup>-1</sup></li> <li>1) Calculate the sta</li> <li></li></ul> | - 286<br>ndard enthalpy of comb                                                       | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature                               | - 126<br>of 800 <i>cm</i> <sup>3</sup> of water                |
| <ul> <li>ΔH<sup>Ø</sup><sub>f</sub> kJmol<sup>-1</sup></li> <li>1) Calculate the sta</li> <li></li></ul> | - 286<br>ndard enthalpy of comb                                                       | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature                               | - 126<br>of 800 <i>cm</i> <sup>3</sup> of water                |
| <ul> <li>ΔH<sup>Ø</sup><sub>f</sub> kJmol<sup>-1</sup></li> <li>1) Calculate the sta</li> <li></li></ul> | - 286<br>ndard enthalpy of comb                                                       | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature                               | - 126<br>of 800 <i>cm</i> <sup>3</sup> of water                |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu 25°C to 55°C              | - 286<br>ndard enthalpy of comb<br>nantity of heat needed t<br>(density of water 1gcm | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature                               | - 126<br>of $800cm^{3}$ of water<br>rater $4.2Jg^{-1}C^{-1}$ ) |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu 25°C to 55°C              | - 286<br>ndard enthalpy of comb<br>nantity of heat needed t<br>(density of water 1gcm | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature $n^{-3}$ , heat capacity of w | - 126<br>of $800cm^{3}$ of water<br>rater $4.2Jg^{-1}C^{-1}$ ) |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu 25°C to 55°C              | - 286<br>ndard enthalpy of comb<br>nantity of heat needed t<br>(density of water 1gcm | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature $n^{-3}$ , heat capacity of w | - 126<br>of $800cm^{3}$ of water<br>rater $4.2Jg^{-1}C^{-1}$ ) |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu 25°C to 55°C              | - 286<br>ndard enthalpy of comb<br>nantity of heat needed t<br>(density of water 1gcm | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature $n^{-3}$ , heat capacity of w | - 126<br>of $800cm^{3}$ of water<br>rater $4.2Jg^{-1}C^{-1}$ ) |
| $\Delta H_f^{\emptyset} k J mol^{-1}$ 1) Calculate the sta 2) Calculate the qu 25°C to 55°C              | - 286<br>ndard enthalpy of comb<br>nantity of heat needed t<br>(density of water 1gcm | - 394<br>pustion of $C_4H_{10}$<br>o raise the temperature $n^{-3}$ , heat capacity of w | - 126<br>of $800cm^{3}$ of water<br>rater $4.2Jg^{-1}C^{-1}$ ) |

- 04.a) A is an unsaturated hydrocarbon with molecular formula  $C_7H_{14}$  It may exhibit only optical isomerism / only geometrical isomerism / both optical and geometrical isomerism. / does not exhibit both geometrical and optical isomerism.
  - 1) If A exhibits only optical isomerism, draw 2 structures which are not mirror image.



2) If A exhibits only geometrical isomerism draw its structure.



3) Draw the structure if A exhibits both geometrical and optical isomerism.



4) Draw one structure of A which does not exhibit both geometrical and optical isomerism.



F

5) On catalytic hydrogenation of B, C, D, E, F if the only product is optically active compound G, draw its structure.



Grade - 12 (2018) July – 2017 F.W.C

6) Draw the structure of another compound H which is a chain isomer of G.



b) State the reactants and conditions in each of the following reactions from 1 to 8.





C) Write the mechanism of the reaction between  $C_2H_5 - CH = CH_2$  and  $Br_2/CCl_4$ 

| Essay Questions – B                                                                                                                                                       |                                                                                                                                                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| a. The question given below is based on the elements belonging to the s, p block of the periodic                                                                          |                                                                                                                                                                |  |  |  |  |
| table. Identify the species P,Q,R,S,T,U,V,W,X                                                                                                                             | table. Identify the species P,Q,R,S,T,U,V,W,X, and Y.                                                                                                          |  |  |  |  |
| P (White solid) $\stackrel{\Delta}{\rightarrow}$ Q (white solid) + R (brown gas) + S (colourless gas)                                                                     |                                                                                                                                                                |  |  |  |  |
| $Q \xrightarrow{conc. Hcl} T$ (Solid giving red flame in flame test) + steam                                                                                              |                                                                                                                                                                |  |  |  |  |
| $\vec{S}$ (colourless gas) + U high temperature                                                                                                                           | V + steam                                                                                                                                                      |  |  |  |  |
| $\operatorname{Sr}_{(s)} + \operatorname{V} \xrightarrow{\Delta} \operatorname{W} (\operatorname{solid})$                                                                 |                                                                                                                                                                |  |  |  |  |
| $W + H_2O_{(l)} \xrightarrow{\Delta} X + U$                                                                                                                               |                                                                                                                                                                |  |  |  |  |
| $Ca_{(S)} + S \xrightarrow{\Delta} Y$ (Solid)                                                                                                                             |                                                                                                                                                                |  |  |  |  |
| $Y + H_2O_{(l)} \rightarrow Z$ (changes phenophthalene to p                                                                                                               | pink)                                                                                                                                                          |  |  |  |  |
| b. An aqueous solution T contains three metallic identify the metallic ions.                                                                                              | ions. The following tests were performed to                                                                                                                    |  |  |  |  |
| Test                                                                                                                                                                      | Observation                                                                                                                                                    |  |  |  |  |
| 1. acidified with cold dilute HCl                                                                                                                                         | A white precipitate $Q_1$ was formed.                                                                                                                          |  |  |  |  |
| <ul> <li>Q<sub>1</sub> was removed by filtration and<br/>H<sub>2</sub>S passed through the filtrate.<br/>H<sub>2</sub>S was completely expelled by boiling the</li> </ul> | Clear solution obtained.                                                                                                                                       |  |  |  |  |
| solution cooled and $NH_4Cl, NH_4OH$<br>added.                                                                                                                            | A green colour precipitate $Q_2$ was formed                                                                                                                    |  |  |  |  |
| 3. Q <sub>2</sub> was removed by filtration and<br>H <sub>2</sub> S was passed through the solution                                                                       | White precipitate $Q_3$ was formed.                                                                                                                            |  |  |  |  |
| Tests for precipitates $Q_1$ , $Q_2$ , and $Q_3$<br>Tests                                                                                                                 | Observation                                                                                                                                                    |  |  |  |  |
| 1. water added to $Q_1$ , boiled and then cooled                                                                                                                          | When heated the precipitate dissolved<br>and formed clear solution. when cooled<br>it was deposited                                                            |  |  |  |  |
| 2. Dilute NaOH and $H_2O_2$ were added<br>to precipitate $Q_2$                                                                                                            | A yellow coloured solution was obtained.                                                                                                                       |  |  |  |  |
| <ol> <li>Q<sub>3</sub> was dissolved in dilute HCl and<br/>dilute NH<sub>4</sub>OH added dropwise.</li> </ol>                                                             | A white precipitate was formed which was dissolved in excess.                                                                                                  |  |  |  |  |
|                                                                                                                                                                           | (i) Identify the three metallic ions in solution T (explanations not necessary) (ii) Write the chemical formulae of the precipitates $Q_1$ , $Q_2$ and $Q_3$ . |  |  |  |  |
|                                                                                                                                                                           |                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                           |                                                                                                                                                                |  |  |  |  |

- c. Write balanced equations for the following reactions and indicate the functions of the species underlined.
  - (i)  $\frac{H_2O_2}{Cr_2O_7} + Ag_2O \rightarrow$ (ii)  $Cr_2O_7^{2-} + H_2O_2 + H^+ \rightarrow$ (iii)  $H_2S + SO_2 \rightarrow$
  - (iv)  $\underline{IO_3}^- + \overline{I^-} + H^+ \rightarrow$
  - (v)  $S + \text{ conc. } \underline{\text{HNO}}_3 \stackrel{\Delta}{\frown}$
- 06. a. The following procedure was used to find the percentage of Cu in an alloy. 11g of the alloy was dissolved in concentrated  $H_2SO_4$  and the solution was made upto500cm<sup>3</sup>  $H_2S$  was passed through 25cm<sup>3</sup> of this solution. 80cm<sup>3</sup> of 0.1moldm<sup>-3</sup> KMnO<sub>4</sub> solution was added in excess to this solution to convert the CuS precipitated into Cu<sup>2+</sup>, Mn<sup>2+</sup> & SO<sub>2</sub> and the SO<sub>2</sub> produced into SO<sub>4</sub> <sup>2-</sup>. The excess KMnO<sub>4</sub> was titrated against 0.5moldm<sup>-3</sup> Fe<sup>2+</sup> solution. At the end point the reading on the burette was 10cm<sup>3</sup>. Calculate the percentage of Cu (Cu 63.5).



- c.  $M^{n+}$  ion of an element belonging to 3d series can be oxidized to  $MO^{+}$  by  $Cr_2O_7^{-2-}$  in the presence. of dilute  $H_2SO_4$  In an experiment  $10cm^3$  of  $0.1moldm^{-3} K_2Cr_2O_7$  was required to oxidize  $6x10^{-3}$  mol of  $M^{n+}$  to  $MO^+$  Using these data calculate the value of n.
- 07. a. Draw the structures of 3 major products that can be expected in the following reaction  $Br CH_3$

$$CH_3 - \begin{matrix} I \\ C \\ - \end{matrix} \\ \begin{matrix} I \\ H \end{matrix} \\ H \end{matrix} - \begin{matrix} H \\ H \end{matrix} \xrightarrow{H} H$$

0 b. Show how  $CH_3CH_2 - CH_2CH_2CH_3$  could be synthesized using acetylene  $(C_2H_2)$ 

as the only organic starting material.

c. Show how the following conversions could be effected.

(i) 
$$CH_3C \equiv CH \longrightarrow CH_3CH_2 - C - CH_2CH_2CH_3$$
  
(ii)  $CH_3CH_2CH_2CH = CH_2 \longrightarrow CH_3CH_2CH_2CH = CH - \begin{matrix} CH_3 \\ CH_3 \\ CH_3 \end{matrix}$ 

d. State a method to differentiate each of the pairs of compounds given below.

(i) 
$$CH_3 - C \equiv C - CH_3 / CH_3 - CH_2 - C \equiv C - H$$

(ii) 
$$CH_3 - CH_3 / CH_2 = CH_2$$