

G.C.E. A/L Examination July - 2015

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Zonal Department of Education Jaffna.

Grade :- 12 (2016)

CHEMISTRY

Part - II (A) Structured Essay * Answer all Questions. (01) a) Complete the following statements Among Na, K and Rb the element which has the lowest density is i) ii) Among $NO_1 NO_2$ and CO_2 , the one which is insoluble in water is Of the chlorides NCl₃, PCl₃ and BCl₃ the one which gives an acidic compound and iii) a basic compound on hydrolysis is Among Li_2O_1 , K_2O_2 and MgO the one which reacts with O_2 is iv) The species which has the greatest N - O bond length among NO_3^- , NO_2 and NO_2^+ v) The skeletal structure of $H_2PO_3^-$ ion is given below. b) $\begin{array}{c} & & \\ O - P - O - H \\ & \\ \\ \end{array}$ Draw the most acceptable Lewis structure for the above ion. i) ii) Draw the resonance structures of it and comment on their relative stabilities.

1

iii) Write the shape and the electron pair geometry around the following atoms in the above ion.

	Atom	Shape around the atom	Electron pair geometry
i)	Р		
ii)	O attached to H		

- c) X, and Y are two consecutive elements belonging to the same period in the periodic table. The first ionization energy of Y is greater than that X. The salts of Y do not impart any characteristic colour in the flame test. X reacts rapidly with cold water to give a solution P and gas Q while Y reacts with steam to give the compound R and the gas Q
- Identify the elements X and Y i) X - Y - ii) Identify the solution P and the compound R P - R - iii) What could be gas Q? iv) What are the compounds that may be formed when Y is ignited in air? Write balanced chemical equations for the reactions that the element X undergoes v) when O_2 gas is in excess. vi) One of the compounds of Y mentioned in part (iv) above reacts with water and forms a gas. Write the balanced chemical equational for the reaction of that gas with excess of $Cl_{2(g)}$ and mention a test for identifying the above stated gas
- (02) (a) A white substance A reacts with dil. H_2SO_4 to produce a colouress gas B and a colourlees solution C. The reaction between B and $K_2Cr_2O_7$ solution produces a green solution and a slightly coloured precipitate D. The substance D burns in air to produce a gas and a colourless liquid. Anhydrous $CuSO_4$ is turned blue on addition of this colourless liquid. Addition of aqueous NH_3 or NaOH to C produces first a precipitate which dissolves in the excess of the respective reagent to produce a clear solution in each case.

i)	Iden	tify the species from A to E
	Α -	
	E -	
ii)	Wri	te balanced equations for the reactions involved.
	•••••	
	•••••	
	•••••	
	•••••	
(b)	i)	Write the chemical formulae of the stable oxides formed by the elements in the 2 nd
		period in their highest oxidation states.
		Mention clearly and separately the acidic / basic / amphoteric / neutral nature of each
		of the above oxides.
	ii)	Mention the variation trend observed in each of the following properties of the
	/	element in the second period across the period from left to right
		i) Electronegativity
		ii) 2 nd ionization energy
`	T	
c)		element M belongs to $3d$ – series M reacts with dry $Cl_{2(g)}$ to form a yellow colured
	solic	
	X ₍	$H_2 O_{(l)}$ Blue dil NH _{3(aq)} Blue
	(solution A precipitate
		HCl Excess NH _{3(aq)}
		Yellow solution C Solution D
	i)	Identify the element <i>M</i>
	-/	
	•••	
	ii)	Write the electron configuration of <i>M</i> in the usual manner as $1s^2 2s^2$

		Write the formulae and the IUPAC names responsible for the colours of each of th A , B , C and D	e
			•
	iv)	What is the colour of the solution <i>D</i>	•
			•
	v)	What could be observed if SO_2 gas is passed through the solution C	
			•
(03) a)	i) W	That is meant by the "compressibility factor (Z)" of a gas	
	ii) D	raw in the diagram given below the plot showing the variation of the compressibilit	
		ctor against pressure for each of the gases NH_3 He and an ideal gas. Label each o	
	th	em. Z	
		Pressure (P)	
	ii	i) Using the ideal gas equation and the equation for kinetic molecular theory, show	w
		that $\overline{C^2} = \frac{3RT}{M}$ where <i>M</i> is the molar mass of the gas.	
	iv		n
		square speed at $227^{\circ}C$ is $500ms^{-1}$, What is the relative atomic mass of X	
Grade: 12	(2016)	- July - 2015 4 Chemistry (A	5

b)	i)	A gaseous mixture which contains the two gases C_2H_6 and C_3H_8 occupies a volume of 11.2 dm ³ under STP conditions when the mixture was subjected to complete combustion, 950 kJ heat was evolved Enthalpies of combustion of $C_2 H_{o(g)}$ and $C_3H_{8(g)}$ are - 1560 kJmol ⁻¹ and - 2240kJ mol ⁻¹ respectively.
		Find the mass% of C_2H_6 in the mixtu ($C = 12, H = 1$)
	ii)	When 2g of a gas A was introduced into an evacuated vessel at $25^{\circ}C$, the
		pressure inside the vessel was $1 \times 10^5 Nm^{-2}$ when 3g of another gas B was
		further introduced into the vessel, the pressure inside it was found to increase to
		$1.5 \times 10^5 Nm^{-2}$ Assuming ideal behavior calculate the ratio of the molar
		masses $M_A: M_B$
(04) A)	The non isomerism	– cyclic hydrocarbon P with the molecular formula C_6H_{12} exhibit enantiomer
<i>i</i>)		possible structure for P in the box below.
		P
		ľ
ii)	Does P exh	nibit geometrical isomerism?
iii)	Draw the s	tructure of the product obtained when P is heated with $\frac{Ni}{H_2}$
		H_2
		Q

	А		В	
ii) W	Trite the reagents L, M and	Ν		
L				
٨	Λ			
	J			
	v			
iii) W	rite the structure of the inte	rmediate formed in reacti	ion (3) above	
	• • • • • • • • • • • • • • • • • • • •			
d) Co	mplete the following table l	by writing the type of me	chanism and the n	najor product in
	mplete the following table l the reactions.	by writing the type of me	chanism and the n	najor product ir
of			chanism and the n	najor product ir
of t Sys	the reactions.		chanism and the n	najor product ir
of t Syn El	the reactions. mbols for mechanism types	:	chanism and the n	najor product ir
of t Syr El El	the reactions. mbols for mechanism types ectrophilic addition (A_E)	: ; ;	chanism and the n	najor product ir
of t Syr El El Nu	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S	: S _E)	chanism and the n	najor product ir
of t Syr El El Nt	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S ucleophilic addition (A_N)	: S _E)	chanism and the n	najor product ir
of t Syr El El Nu Nu El	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_E) ucleophilic addition (A_N) ucleophilic substitution (S_E)	: 5 _E) 5 _N)	chanism and the n	najor product ir
of t Syr El El Nu Nu El	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_R) ucleophilic substitution (S_R) liminination (E) ree radical substitution (F_R)	: S _E) S _N)		
of t Syr El El Nu Nu El	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_E) ucleophilic addition (A_N) ucleophilic substitution (S_E)	: 5 _E) 5 _N)	chanism and the n	
of t Syr El El Nu Nu El	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_R) ucleophilic substitution (S_R) liminination (E) ree radical substitution (F_R)	: S _E) S _N)	Mechanism	najor product in Major prod
of t Syr El El Nu El Fr	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S) ucleophilic substitution (S) liminination (E) ree radical substitution (F_R) Reactant	: S _E) S _N) Reagent	Mechanism	
of t Syr El El Nt El Fr 1) 2)	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_R) ucleophilic substitution (S_R) iminination (E) ree radical substitution (F_R) Reactant $CH_3CH = CH_2$ $CH_3CH - CH_2CH_3$ OH	$\frac{\mathbf{Reagent}}{HBr}$	Mechanism	
of 1 Syn El El Nu El Fr 1) 2) 3)	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_E) lectrophilic addition (A_N) ucleophilic addition (A_N) ucleophilic substitution (S_E) ree radical substitution (F_R) Reactant $CH_3CH = CH_2$ $CH_3CH - CH_2CH_3$ OH $CH_3CH_2CHBrCH_3$	$\frac{\mathbf{Reagent}}{HBr}$ $\frac{HBr}{Al_2O_3/\Delta}$ $Ethanol / KOH$	Mechanism	
of t Syr El Nt El Fr 1) 2)	the reactions. mbols for mechanism types lectrophilic addition (A_E) lectrophilic substitution (S_R) ucleophilic substitution (S_R) iminination (E) ree radical substitution (F_R) Reactant $CH_3CH = CH_2$ $CH_3CH - CH_2CH_3$ OH	$\frac{\mathbf{Reagent}}{HBr}$	Mechanism	